170
V. Rato6elomanana-Vidal, J.-P. Geneˆt / Journal of Organometallic Chemistry 567 (1998) 163–171
Acknowledgements
The sequential ruthenium catalyzed hydrogenation
[29,31] and electrophilic amination [40] was applied to
the synthesis of enantiomerically pure anti N-Boc-h-
hydrazino-i-hydroxyesters.
We would like to thank Dr R. Schmidt (Hoffman La
Following this strategy, some heterocycles were syn-
thesized such as (3S,4S)-4-hydroxy-2,3,4,5-tetrahy-
dropyridazine-3-carboxylic acid [41] which was an
unusual aminoacid constituent of luzopeptin A.
Roche) for a generous gift of (R) and (S)-MeO–
BIPHEP and Dr P. Savignac for samples of i-ke-
tophosphonates and thiophosphonates.
References
[1] H.B. Kagan, in: G. Wilkinson (Ed.), Comprehensive Organomet-
talic Chemistry, 8, Pergamon Press, Oxford, 1982, p. 463.
[2] H.B. Kagan, Bull. Soc. Chim. Fr. (1988) 846.
[3] G. Consiglio, R.M. Waymouth, Chem. Rev. 89 (1989) 257.
[4] J.W. ApSimon, T.L. Collier, Tetrahedron 42 (1986) 5157.
[5] S.L. Blystone, Chem. Rev. 89 (1989) 1664.
A rapid stereocontrolled route to both enantiomers
of trans-3-hydroxypipecolic [42] acid was achieved from
methyl-7-methyl-3-oxooct-6-enoate using (R) or (S)-Bi-
napRuBr2. This intermediate was used to perform the
total synthesis of (−)-swainsonine [43].
[6] I. Ojima, N. Clos, C. Bastos, Tetrahedron 45 (1989) 6901.
[7] J.K. Whitesell, Chem. Rev. 89 (1989) 1581.
[8] B. James, A.M. Joshi, P. Kvintovics, R.M. Morris, in: D.W.
Thorburn Blackburn (Ed.), Catalysis of Organic Reactions,
Marcel Dekker, New York, 1990, p. 11.
[9] R. Noyori, Tetrahedron 50 (1994) 4259.
[10] A.N. Collins, G.N. Sheldrake, J. Crosby (Eds.), Chirality in
Industry, Wiley, New York, 1992.
[11] R. Noyori, Asymmetric Catalysis, Wiley, New York, 1994.
[12] S. Akutagawa, Appl. Catalysis A 128 (1995) 171.
[13] H.B. Kagan, in: J.D. Morrison (Ed.), Asymmetric Synthesis,
Academic Press, New York, 1985, p. 5.
(2S,3R) and (2R,3R) methyl p-chloro-3-hydroxyty-
rosinates [44] which were components of Vancomycin
have been synthesized from 3-chloro-4-hydroxybenzoic
acid.
[14] H. Brunner, in: E.L. Eliel, S.H. Wiley (Eds), Topics in Stereo-
chemistry, 18, 1988, p. 541.
[15] F. Robin, F. Mercier, L. Ricard, F. Mathey, M. Spagnol, Chem.
Eur. J. 3 (1997) 1365.
[16] B.R. James, D. Wang, R.F. Voigt, J. Chem. Soc., Chem. Com-
mun. (1975) 574.
[17] T. Ikariya, Y. Ischii, H. Kawano, T. Arai, M. Saburi, S.
Yoshikawa, S. Akutagawa, J. Chem. Soc., Chem. Commun.
(1985) 922.
[18] M. Kitamura, M. Tokunaga, R. Noyori J. Org. Chem. 57 (1992)
4053.
[19] (a) R. Noyori, M. Ohta, Y. Hsiao, M. Kitamura, T. Ohta, H.
Takaya, J. Am. Chem. Soc. 108 (1986) 7117. (b) M. Kitamura,
T. Ohkuma, S. Inoue, N. Sayo, H. Kumobayashi, S. Akutagawa,
T. Ohta, H. Takaya, R. Noyori, K. Takaya, J. Am. Chem. Soc.
110 (1988) 629.
[20] T. Ohta, H. Takaya, R. Noyori, Inorg. Chem. 27 (1988) 566.
[21] Mashima, K.H. Kusano, T. Ohta, R. Noyori, H. Takaya, J.
Chem. Soc., Chem Commun. (1989) 1208.
An efficient synthesis of (2S,3R)-3-hydroxylysine has
been achieved from butyric acid via ruthenium cata-
lyzed asymmetric hydrogenation [45]. In conclusion, the
results described above demonstrates that the chiral
Ru(II) complexes prepared in situ from the commer-
cially available (COD)Ru(p3-(CH2)2CCH3)2 and chiral
diphosphines are efficient catalysts for the homoge-
neous enantioselective hydrogenation [23] of a number
of prochiral substrates. This general method is compat-
ible with a broad variety of diphosphines. Various new
ruthenium catalysts have already been prepared using
this technology.
[22] M. Kitamura, M. Tokunaga, T. Ohkuma, R. Noyori, Tetrahe-
dron Lett. 32 (1991) 4163.