Fragmentation of p-Amidobenzyl Ethers
J . Org. Chem., Vol. 67, No. 6, 2002 1871
Aesar; Z-val-OSu, Advanced ChemTech; L-citrulline, Novabio-
chem; (1S,2R)-(+)-norephedrine and other commercially avail-
able reagents, Aldrich. Z-val-cit-PAB-OH (1)10,11 and combre-
tastatin A-4 (7)39 were synthesized as previously described.
1H NMR spectra were recorded on a Varian Gemini spectro-
photometer at 300 MHz. Flash column chromatography was
performed using 230-400 mesh ASTM silica gel from EM
Science. Analtech silica gel GHLF plates were used for thin-
layer chromatography. HPLC was performed using a Waters
Alliance system with a photodiode array detector. Combustion
analyses were determined by Quantitative Technologies, Inc.,
Whitehouse, NJ .
Gen er a l P r oced u r e for th e Mitsu n obu Rea ction . Pep-
tide 1 (1.0 equiv), triphenylphosphine (1.1 equiv) and the
appropriate phenol (1.0-1.1 equiv) were dissolved in DMF/
toluene (1:1) and evaporated to dryness under high vacuum.
The residue was taken up in dry DMF while under N2 and
cooled to 0 °C. DIAD (1.1 equiv) was added dropwise over 1
min while stirring. The yellow-brown solution was monitored
by TLC (9:1 CH2Cl2-MeOH). An additional 1.1 equiv of PPh3
and DIAD was added after 4 h. The solution was stirred for a
total of 16-24 h, followed by solvent removal in vacuo. The
resulting product was purified by chromatography on silica
gel (eluent gradient: 100% CH2Cl2 to 9:1 CH2Cl2-MeOH). The
desired fractions were pooled and concentrated to a white or
an off-white solid. Further purification could be obtained by
triturating with ether.
Z-Va l-cit-P AB-1-O-n a p h th ol (2): Rf 0.26 (9:1 CH2Cl2-
MeOH); mp 175 dec; UV λmax 215, 242, 305 nm; LRMS (ESI+)
m/z 640.3 (M + H)+, 662.2 (M + Na)+, 678.2 (M + K)+; 1H NMR
(DMSO-d6) δ 8.19-8.24 (2 H, m, aromatic), 7.80-7.87 (2 H,
m, aromatic), 7.06-7.50 (13 H, m, aromatic), 6.76 (1 H, d, J )
7.8 Hz, aromatic), 5.07 (2 H, s, Z-CH2), 4.44-4.50 (1 H, m,
val-CH), 4.28 (2 H, s, PAB-CH2), 3.95 (1 H, d, J ) 6.9 Hz, cit-
CH), 3.03-3.20 (2 H, m, cit-NCH2), 1.95-2.10 (1 H, m, val-
CH), 1.28-1.78 (4 H, m, cit-CH2’s), 0.96 (3 H, d, J ) 6.9 Hz,
val-CH3), 0.93 (3 H, d, J ) 6.9 Hz, val-CH3). Anal. (C36H41N5O6‚
H2O) C, H, N.
Z-Va l-cit-P AB-O-tr ich lor oa ceta m id a te (3). Peptide 1
(100 mg, 0.19 mmol) was dissolved in anhydrous DMF, and
cesium carbonate (13 mg, 4 µmol, 0.2 equiv) was added. While
under N2, trichloroacetonitrile (0.2 mL, 1.9 mmol, 10 equiv)
was added, and the contents were stirred while being moni-
tored by TLC (9:1 CH2Cl2-MeOH) . The reaction was complete
after 16 h. The mixture was filtered, and the filtrate was
concentrated and subjected to chromatography on SiO2 (eluent
gradient 100% CH2Cl2 to 9:1 CH2Cl2-MeOH containing 1%
triethylamine). The desired fractions were pooled and evapo-
rated to an off-white powder (99 mg, 77%): Rf 0.44 (9:1
CH2Cl2-MeOH); UV λmax 215, 250 nm; LRMS (ESI+) m/z 679.3
(M + Na)+, 681.2 (M + 2 + Na)+, 683.2 (M + 4 + Na)+, 685.2
(M + 6 + Na)+, 695.2 (M + K)+, 697.2 (M + 2 + K)+, 699.2 (M
+ 4 + K)+; 1H NMR (DMSO-d6) δ 10.08 (1 H, s, PAB-NH),
9.37 (1 H, s, CdNH), 8.10 (1 H, d, J ) 7.8 Hz, amide NH),
7.60 (2 H, d, J ) 8.4 Hz, PAB-CH ×2), 7.21-7.38 (8 H, m,
aromatic), 5.96 (1 H, t, J ) 5.1 Hz, cit-NH), 5.40 (2 H, s, cit-
NH2), 5.21 (2 H, s, PAB-CH2), 5.02 (2 H, s, Z-CH2), 4.40 (1 H,
dd, J ) 13.2, 7.8 Hz, val-CH), 3.90 (1 H, t, J ) 8.4 Hz, cit-
CH), 2.85-3.15 (2 H, m, cit-CH2), 1.90-2.05 (1 H, m, val-CH),
1.28-1.74 (4 H, m, cit-CH2), 0.86 (3 H, d, J ) 6.6 Hz, val-
CH3), 0.82 (3 H, d, J ) 6.9 Hz, val-CH3). Anal. (C28H35Cl3N6O6‚
0.2H2O, 0.4Et3N) C, H, N, Cl.
was purified by chromatography on SiO2 (1:1 CH2Cl2-EtOAc),
and the combined fractions were concentrated to a clear oil
that solidified. Recrystallization from EtOAc-hexanes gave a
white cottonlike solid as the desired product (4.95 g, 79%): mp
123 °C; Rf 0.14 (1:1 CH2Cl2-EtOAc); UV λmax 215, 256 nm; 1H
NMR (CDCl3) δ 7.28-7.39 (5 H, m, aromatic), 5.59 (1 H, br d,
J ) 8.4 Hz, NH), 4.87 (1 H, d, J ) 3.6 Hz, H-1), 4.34 (1 H, dp,
J ) 3.0, 6.9 Hz, H-2), 3.48 (1 H, br s, OH), 2.01 (3 H, s, Ac),
1.02 (3 H, d, J ) 6.9 Hz, H-3). Anal. (C11H15NO2) C, H, N.
Z-Va l-cit-P AB-O-(N-Ac)-Nor (5). The trichloroacetamidate
3 (1 equiv) and alcohol 4 (1 equiv) were suspended in
anhydrous CH2Cl2 and cooled to 0 °C. Dropwise addition of
trifluoromethanesulfonic acid (0.5 equiv) gave an immediate
gummy precipitate. TLC analysis (9:1 CH2Cl2-MeOH) showed
a product (Rf 0.28) and some decomposition of 3 to Z-val-cit-
PAB-OH 1 (Rf 0.14). The contents were evaporated to a yellow
solid and purified by chromatography on SiO2 (eluent gradient
100% CH2Cl2 to 9:1 CH2Cl2-MeOH). The desired ether (5) was
isolated as an off-white solid after triturating with diethyl
ether: Rf 0.28 (9:1 CH2Cl2-MeOH); UV λmax 215, 256 nm;
LRMS (ESI+) m/z 688.4 (M + H)+, 711.4 (M + Na)+; 1H NMR
(DMSO-d6) δ 10.02 (1 H, s, PAB-NH), 8.10 (1 H, d, J ) 7.2
Hz, amide NH), 7.81 (1 H, d, J ) 9.0 Hz, amide NH), 7.56 (2
H, d, J ) 8.7 Hz, PAB-CH ×2), 7.21-7.39 (12 H, m, aromatic),
5.98 (1 H, t, J ) 5.1 Hz, cit-NH), 5.41 (2 H, s, cit-NH2), 5.03 (2
H, s, Z-CH2), 4.06-4.45 (4 H, m, val-CH, Nor-CH, PAB-CH2),
3.84-3.94 (2 H, m, cit-CH, Nor-CH), 2.85-3.15 (2 H, m, cit-
CH2), 1.87-2.04 (1 H, m, val-CH), 1.67 (3 H, s, Nor-Ac), 1.28-
1.75 (4 H, m, cit-CH2’s), 0.98 (3 H, d, J ) 6.6 Hz, Nor-CH3),
0.86 (3 H, d, J ) 6.6 Hz, val-CH3), 0.82 (3 H, d, J ) 6.9 Hz,
val-CH3). Anal. (C37H48N6O7‚H2O) C, H, N.
Z-Va l-cit-P AB-O-etop osid e (6). Following the Mitsunobu
procedure described above, the pure fractions from chroma-
tography on SiO2 gave the ether as a white solid (64%): Rf
0.29 (9:1 CH2Cl2-MeOH); UV λmax 215, 250, 290 nm; LRMS
(ESI+) m/z 1084.6 (M + H)+, 1106.6 (M + Na)+, 1122.6 (M +
K)+; 1H NMR (DMSO-d6) δ 10.01 (1 H, s, PAB-NH), 8.08 (1 H,
d, J ) 7.2 Hz, amide NH), 7.57 (2 H, d, J ) 8.1 Hz, PAB-CH
×2), 7.29-7.40 (7 H, m, aromatic), 7.00 (2 H, s, etop aromatic),
6.53 (1 H, s, etop aromatic), 6.23 (2 H, s, etop aromatic), 6.01
(1 H, d, J ) 3.3 Hz, etop-CH2), 5.96 (1 H, t, J ) 5.1 Hz, cit-
NH), 5.40 (2 H, s, cit-NH2), 5.24 (1 H, s, etop-OH), 5.22 (1 H,
s, etop-OH), 5.02 (2 H, s, Z-CH2), 4.92 (1 H, d, J ) 3.0 Hz,
etop-CH), 4.74 (2 H, s, PAB-CH2), 4.70 (1 H, dd, J ) 9.9, 4.8
Hz, etop-CH), 4.56 (1 H, d, J ) 7.8 Hz, etop-CH), 4.54 (1 H, d,
J ) 5.1 Hz, etop-CH), 4.36-4.44 (1 H, m, val-CH), 4.25 (2 H,
dd, J ) 9.0 Hz, etop-CH ×2), 4.06 (1 H, dd, J ) 11.1, 4.8 Hz,
etop-CH), 3.90 (1 H, t, J ) 6.9 Hz, cit-CH), 3.62 (6 H, s, etop-
OCH3 ×2), 3.49 (1 H, t, J ) 9.6 Hz, etop-CH), 2.81-3.30 (9 H,
m, etop-CH ×7, cit-NCH2), 1.88-2.05 (1 H, m, val-CH), 1.30-
1.74 (4 H, m, cit-CH2’s), 1.22 (3 H, d, J ) 4.8 Hz, etop-CH3),
0.86 (3 H, d, J ) 6.6 Hz, val-CH3), 0.82 (3 H, d, J ) 6.9 Hz,
val-CH3). Anal. (C55H65N5O18‚2H2O) C, H, N.
Z-Va l-cit-P AB-3′-O-com br eta sta tin A-4 (9). Using the
Mitsunobu reaction conditions described above, the compound
was isolated as an amorphous solid after trituration. Rf 0.42
(9:1 CH2Cl2-MeOH); mp 169-172 dec; UV λmax 215, 248, 300
nm; LRMS (ESI+) m/z 812.4 (M + H)+, 834.4 (M + Na)+, 850.4
(M + K)+; 1H NMR (DMSO-d6) δ 10.06 (1 H, s, PAB-NH), 8.11
(1 H, d, J ) 7.2 Hz, amide NH), 7.57 (2 H, d, J ) 8.4 Hz, PAB-
CH ×2), 7.24-7.45 (6 H, m, aromatic), 7.21 (2 H, d, J ) 8.4
Hz, PAB-CH ×2), 6.82-6.98 (2 H, m, CSA4-H-5′, -6′), 6.56 (2
H, s, CSA4-H-2), 6.48 (2 H, d, J ) 12.3 Hz, CSA4-cis-CH), 6.44
(2 H, d, J ) 12.3 Hz, CSA4-cis-CH), 5.97 (1 H, t, J ) 5.1 Hz,
cit-NH), 5.41 (2 H, s, cit-NH2), 5.03 (2 H, s, Z-CH2), 4.76 (2 H,
s, PAB-CH2), 4.36-4.45 (1 H, m, val-CH), 3.92 (1 H, t, J ) 7.2
Hz, cit-CH), 3.82 (3 H, s, CSA4-3′-OCH3), 3.61 (9 H, s, CSA4-
3,4,5-OCH3), 2.88-3.07 (2 H, m, cit-NCH2), 1.90-2.03 (1 H,
m, val-CH), 1.28-1.78 (4 H, m, cit-CH2’s), 0.86 (3 H, d, J )
6.6 Hz, val-CH3), 0.82 (3 H, d, J ) 6.9 Hz, val-CH3). Anal.
(C44H53N5O10‚H2O) C, H, N.
(1S,2R)-N-Acetyl-n or ep h ed r in e (4). (1S,2R)-(+)-norephe-
drine (5.0 g, 32.4 mmol) was partially suspended in water (65
mL, 0.5 M). Acetic anhydride (6.2 mL, 64.8 mmol, 2.0 equiv)
was added, and the resulting yellow solution was stirred for 1
h. EtOAc was added, the layers were separated, and the
aqueous layer was further washed with EtOAc (2×). The
combined organic extracts were washed with brine and dried
(MgSO4). Filtration, followed by removal of solvent, led to a
yellow oil that slowly formed yellow crystals. The crude product
(1S,2R)-N-Acet yl-O-(4-n it r op h en yloxyca r b on yl)n or -
ep h ed r in e (10). Compound 4 (1.0 g, 5.17 mmol, 1.0 equiv)
and p-nitrophenylchloroformate (1.61 g, 7.76 mmol, 1.5 equiv)
were dissolved in anhydrous THF (12 mL, 0.5 M) while under
(39) Pettit, G. R.; Singh, S. B.; Boyd, M. R.; Hamel, E.; Pettit, R.
K.; Schmidt, J . M.; Hogan, F. J . Med. Chem. 1995, 38, 1666-1672.