Page 5 of 7
Journal of the American Chemical Society
(1) (a) Johnson, C. R. The Utilization of Sulfoximines and Derivatives
under Mild, Metal-Free Conditions. Chem.–Eur. J. 2010, 16, 8713. (g)
Zenzola, M.; Doran, R.; Degennaro, L.; Luisi, R.; Bull, J. A. Transfer of
Electrophilic NH Using Convenient Sources of Ammonia: Direct Synthesis
of NH Sulfoximines from Sulfoxides. Angew. Chem. Int.
Ed. 2016, 55, 7203. (h) Bull, J. A.; Degennaro, L.; Luisi, R. Straightforward
Strategies for the Preparation of NH-Sulfoximines: A Serendipitous Story.
Synlett 2017, 28, 2525. (i) Degennaro, L.; Tota, A.; Angelis, S. D.;
Andresini, M.; Cardellicchio, C.; Capozzi, M. A.; Romanazzi, G.; Luisi, R.
A Convenient, Mild, and Green Synthesis of NH-Sulfoximines in Flow
Reactors. Eur. J. Org. Chem. 2017, 6486.
as Reagents for Organic Synthesis. Acc. Chem. Res. 1973, 6, 341. (b)
Reggelin, M.; Zur, C. Sulfoximines: Structures, Properties and Synthetic
Applications. Synthesis 2000, 1. (c) Bolm, C.; Okamura, H. Sulfoximines:
Synthesis and Catalytic Applications. Chem. Lett. 2004, 33, 482.
1
2
3
4
5
6
7
8
(2) (a) Lücking, U. Sulfoximines: A Neglected Opportunity in Medicinal
Chemistry. Angew. Chem., Int. Ed. 2013, 52, 9399. (b) Frings, M.; Bolm,
C.; Blum, A.; Gnamm, C. Sulfoximines from a Medicinal Chemist's
Perspective: Physicochemical and in vitro Parameters Relevant for Drug
Discovery. Eur. J. Med. Chem. 2017, 126, 225. (c) Alberto, J.; Lücking, U.
Novel Pieces for the Emerging Picture of Sulfoximines in Drug Discovery:
Synthesis and Evaluation of Sulfoximine Analogues of Marketed Drugs and
Advanced Clinical Candidates. ChemMedChem 2017, 12, 487. (d) Lücking,
U. Neglected sulfur (VI) pharmacophores in drug discovery: exploration of
novel chemical space by the interplay of drug design and method
development. Org. Chem. Front. 2019, 6, 1319.
(6) For selected examples of the asymmetric synthesis of chiral
sulfimides, see: (a) Bizet, V.; Hendriks, C. M. M.; Bolm, C. Sulfur
imidations: access to sulfimides and sulfoximines. Chem. Soc. Rev. 2015,
44, 3378. (b) Wang, J.; Frings, M.; Bolm, C. Enantioselective Nitrene
Transfer to Sulfides Catalyzed by a Chiral Iron Complex. Angew. Chem.,
Int. Ed. 2013, 52, 8661. (c) Collet, F.; Dodd, R. H.; Dauban, P.
Stereoselective Rhodium-Catalyzed Imination of Sulfides. Org. Lett. 2008,
10, 5473. (d) Lebel, H.; Piras, H.; Bartholoméüs, J. Rhodium-Catalyzed
Stereoselective Amination of Thioethers with N-Mesyloxycarbamates:
DMAP and bis(DMAP)CH2Cl2 as Key Additives. Angew. Chem., Int. Ed.
2014, 53, 7300.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(3) (a) Park, S. J.; Buschmann, H.; Bolm, C. Bioactive sulfoximines:
syntheses and properties of Vioxx Ⓡ analogs. Bioorg. Med. Chem. Lett.
2011, 21, 4888. (b) Park, S. J.; Baars, H.; Mersmann, S.; Buschmann, H.;
Baron, J. M.; Amann, P. M.; Czaja, K.; Hollert, H.; Bluhm, K.; Redelstein,
R.; Bolm, C. N-Cyano Sulfoximines: COX Inhibition, Anticancer Activity,
Cellular Toxicity, and Mutagenicity. ChemMedChem 2013, 8, 217. (c)
Siemeister, G.; Lücking, U.; Wengner, A. M.; Lienau, P.; Steinke, W.;
Schatz, C.; Mumberg, D; Ziegelbauer, K. BAY 1000394, a Novel Cyclin-
Dependent Kinase Inhibitor, with Potent Antitumor Activity in Mono- and
in Combination Treatment upon Oral Application. Mol. Cancer
Ther. 2012, 11, 2265. (d) Lücking, U.; Jautelat, R.; Krüger, M.; Brumby,
T.; Lienau, P.; Schäfer, M.; Briem, H.; Schulze, J.; Hillisch, A.; Reichel,
A.; Wengner, A. M.; Siemeister, G. The Lab Oddity Prevails: Discovery of
Pan-CDK Inhibitor (R)-S-Cyclopropyl-S-(4-{[4-{[(1R,2R)-2-hydroxy-1-
methylpropyl]oxy}-5-(trifluoromethyl)pyrimidin-2-
yl]amino}phenyl)sulfoximide (BAY 1000394) for the Treatment of Cancer.
ChemMedChem 2013, 8, 1067. (e) Ayaz, P.; Andres, D.; Kwiatkowski, D.
A.; Kolbe, C.-C.; Lienau, P.; Siemeister, G.; Lücking, U.; Stegmann, C.
M. Conformational Adaption May Explain the Slow Dissociation Kinetics
of Roniciclib (BAY 1000394), a Type I CDK Inhibitor with Kinetic
Selectivity for CDK2 and CDK9. ACS Chem. Biol. 2016, 11, 1710. (f)
Buckheit, W. R.; Fliaka-Boltz, V.; Decker, D. W.; Roberson, L. J.; Pyle, C.
A.; White, L. E.; Bowden, B. J.; McMahon, J. B.; Boyd, M. R.; Bader, J.
P.; Nickell, D. G.; Barth, H.; Antonucci, T. K. Biological and biochemical
anti-HIV activity of the benzothiadiazine class of nonnucleoside reverse
(7) For selected examples of the asymmetric synthesis of chiral
sulfoximines via kinetic resolution, see: (a) Dong, S.; Frings, M.; Cheng,
H.; Wen, J.; Zhang, D.; Raabe, G.; Bolm, C. Organocatalytic Kinetic
Resolution of Sulfoximines. J. Am. Chem. Soc. 2016, 138, 2166. (b) Wang,
J.; Frings, M.; Bolm, C. Iron-Catalyzed Imidative Kinetic Resolution of
Racemic Sulfoxides. Chem. –Eur. J. 2014, 20, 966. (c) Brauns, M.; Cramer,
N. Efficient Kinetic Resolution of Sulfur-Stereogenic Sulfoximines by
Exploiting CpxRhIII-Catalyzed C-H Functionalization. Angew. Chem., Int.
Ed. 2019, 58, 8902.
(8) For selected examples of the asymmetric synthesis of chiral
sulfoximines via desymmetrization, see: (a) Pandey, A. G.; McGrath, M. J.;
García Mancheño, O.; Bolm, C. Asymmetric Syntheses of S,S-Dialkyl-
Substituted Sulfoximines and Related Heterocycles. Synthesis 2011, 3827.
(b) Shen, B.; Wan, B.; Li, X. Enantiodivergent Desymmetrization in the
Rhodium(III)-Catalyzed Annulation of Sulfoximines with Diazo
Compounds. Angew. Chem., Int. Ed. 2018, 57, 15534. (c) Sun, Y.; Cramer,
N. Enantioselective Synthesis of Chiral-at-Sulfur 1,2-Benzothiazines by
CpxRhIII-Catalyzed C-H Functionalization of Sulfoximines. Angew. Chem.,
Int. Ed. 2018, 57, 15539.
(9) Aota, Y.; Kano, T.; Maruoka, K. Asymmetric Synthesis of Chiral
Sulfoximines via the S-Alkylation of Sulfinamides. Angew. Chem., Int. Ed.
transcriptase
inhibitors. Antiviral Res. 1994, 25, 43. (g) Kahraman,
M.; Sinishtay, S.; Dolan, P. M.; Kensler, T. W.; Peleg, S.; Saha,
U.; Chuang, S. S.; Bernstein, G.; Korczak, B.; Poser, G. H. Potent,
Selective and Low-Calcemic Inhibitors of CYP24 Hydroxylase: 24-
Sulfoximine Analogues of the Hormone 1α,25-Dihydroxyvitamin D3. J.
Med. Chem. 2004, 47, 6854. (h) Posnera, G. H.; Helvig, C; Cuerrier, D.;
Collop, D.; Kharebov, A.; Ryder, K.; Epps, T.; Petkovich, M. Vitamin D
analogues targeting CYP24 in chronic kidney disease. J. Steroid Biochem.
Mol. Biol., 2010, 121, 13.
(10) (a) Baffoe, J.; Hoe, M. Y.; Toure´, B. B. Copper-Mediated N-
Heteroarylation of Primary Sulfonamides: Synthesis of Mono-N-heteroaryl
Sulfonamides. Org. Lett. 2010, 12, 1532. (b) Binda, P. I.; Abbina, S.; Du,
G. Modular Synthesis of Chiral β-Diketiminato-Type Ligands Containing
2-Oxazoline Moiety via Palladium-Catalyzed Amination. Synthesis 2011,
2609. (c) Prakash, A.; Dibakar, M.; Selvakumar, K.; Ruckmani,
K.; Sivakumar, M. Efficient indoles and anilines syntheses employing tert-
butyl sulfinamide as ammonia surrogate. Tetrahedron Lett. 2011, 52, 5625.
(d) Sun, X.; Tu, X.; Dai, C.; Zhang, X.; Zhang, B.; Zeng, Q. Palladium-
Catalyzed C–N Cross Coupling of Sulfinamides and Aryl Halides. J. Org.
Chem. 2012, 77, 4454. (e) Liu, Y.; Wang, Z.; Guo, B.; Cai, Q. Asymmetric
synthesis of N-aryl sulfinamides: copper(I)-catalyzed coupling of
sulfinamides with aryl iodides via kinetic resolution. Tetrahedron
Lett. 2016, 57, 2379.
(4) For reviews on the asymmetric synthesis of chiral sulfoxides, see: (a)
Wojaczyńska, E.; Wojaczyński, J. Enantioselective Synthesis of
Sulfoxides: 2000-2009. Chem. Rev. 2010, 110, 4303. (b) Han, J.;
Soloshonok, V. A.; Klika, K. D.; Drabowicz, J.; Wzorek, A. Chiral
sulfoxides: advances in asymmetric synthesis and problems with the
accurate determination of the stereochemical outcome. Chem. Soc. Rev.
2018, 47, 1307. (c) Kaiser, D.; Klose, I.; Oost, R.; Neuhaus, J.; Maulide,
N. Bond-Forming and -Breaking Reactions at Sulfur(IV): Sulfoxides,
Sulfonium Salts, Sulfur Ylides, and Sulfinate Salts. Chem.
Rev. 2019, 119, 8701.
(11) For a review on tert-butanesulfinamide, see: Robak, M. T.; Herbage,
M. A.; Ellman, J. A. Synthesis and Applications of tert-Butanesulfinamide.
Chem. Rev. 2010, 110, 3600.
(5) For selected examples of the stereospecific nitrene transfer reaction
to chiral sulfoxides, see: (a) Bach, T.; Körber, C. The Preparation of N-tert-
Butyloxycarbonyl-(Boc-)Protected Sulfoximines and Sulfimines by an
Iron(II)-Mediated Nitrene Transfer from BocN3 to Sulfoxides and Sulfides.
Eur. J. Org. Chem. 1999, 1033. (b) Okamura, H.; Bolm, C. Rhodium-
Catalyzed Imination of Sulfoxides and Sulfides: Efficient Preparation of N-
Unsubstituted Sulfoximines and Sulfilimines. Org. Lett. 2004, 6, 1305. (c)
Cho, G. Y.; Bolm, C. Silver-Catalyzed Imination of Sulfoxides and
Sulfides. Org. Lett. 2005, 7, 4983. (d) García Mancheño, O.; Bolm, C. Iron-
Catalyzed Imination of Sulfoxides and Sulfides. Org. Lett. 2006, 8, 2349.
(e) García Mancheño, O.; Dallimore, J.; Plant, A.; Bolm, C. Iron(II) Triflate
as an Efficient Catalyst for the Imination of Sulfoxides. Org. Lett. 2009, 11,
2429. (f) Ochiai, M.; Naito, M.; Miyamoto, K.; Hayashi, S.; Nakanishi, W.
Imination of Sulfides and Sulfoxides with Sulfonylimino-λ3-Bromane
(12) For selected examples of the de-tert-butylation of chiral
sulfoximines, see: (a) Gaillard, S.; Papamicaël, C.; Dupas, G.; Marsais, F.;
Levacher, V. ortho-Lithiation of S-tert-butyl-S-phenylsulfoximines. New
route to enantiopure sulfinamides via a de-tert-butylation reaction.
Tetrahedron 2005, 61, 8138. (b) Ye, W.; Zhang, L.; Ni, C.; Rong, J.; Hu, J.
Stereoselective [3+2] cycloaddition of N-tert-butanesulfinyl imines to
arynes facilitated by a removable PhSO2CF2 group: synthesis and
transformation of cyclic sulfoximines. Chem. Commun. 2014, 50, 10596.
(c) Wiezorek, S.; Lamers, P.; Bolm, C. Conversion and degradation
pathways of sulfoximines. Chem. Soc. Rev., 2019, 48, 5408.
(13) For selected examples of the asymmetric synthesis of chiral
sulfinamides, see: (a) Han, Z.; Krishnamurthy, D.; Grover, P.; Fang, Q. K.;
Senanayake, C. H. Properly Designed Modular Asymmetric Synthesis for
ACS Paragon Plus Environment