Communication
ChemComm
Yu. A. Cheburkov, Izv. Akad. Nauk SSSR, Ser. Khim., 1960, 2162;
oligoynoates is inferred. We could not exclude the likelihood of
the occurrence of 1,4-addition although we did not isolate the
corresponding products. The putative 1,4-addition pathway may
result in the formation of unstable intermediates which proceed
to regenerate reactants followed by 1,3-addition or undergo poly-
merization with oligoynoates. The preliminary computational
studies of these oligoynoates exhibited larger orbital coefficients
along Pz at the a-carbon of 2,20 corroborating the currently
observed 1,3-addition with phosphine nucleophiles. Other mecha-
nistic consideration leading to 1,3-addition such as the oxophili-
city of phosphines and resonance stabilization through an alkynyl
p-moiety also cannot be excluded.
In summary, we have demonstrated a unique nucleophilic
conjugate 1,3-addition reaction of oligoynoates with phosphines
through analyses of their assembled products with aldehydes.
Extension of the acetylenic unit does not alter the addition pattern.
The novel addition mode represents the first formal a-selective
nucleophilic conjugate reaction of phosphines to oligoynoates. This
new class of acceptors may be applicable as reaction partners for
other Morita–Baylis–Hillman type reactions. Our ongoing endea-
vors are directed to explore the regioreactivity of these oligoynoates
toward other organometallic and organic nucleophiles such as
N-heterocyclic carbenes (NHC). Application of this phosphine
1,3-addition reaction toward syntheses of useful products and
toward phosphine catalysis is also underway.21
´
(e) J. Aleman, E. Reyes, B. Richter, J. Overgaard and K. A. Jørgensen,
Chem. Commun., 2007, 3921; ( f ) X. Bi, J. Zhang, Q. Liu, J. Tan and
B. Li, Adv. Synth. Catal., 2007, 349, 2301; (g) R. Ballini, N. A. Bazan,
G. Bosica and A. Palmieri, Tetrahedron Lett., 2008, 49, 3865.
6 (a) S. H. Rosenberg and H. Rapoport, J. Org. Chem., 1985, 50, 3979;
(b) Y. Li, F. Liang, X. Bi and Q. Liu, J. Org. Chem., 2006, 71, 8006;
(c) Y. Li, X. Xu, J. Tan, P. Liao, J. Zhang and Q. Liu, Org. Lett., 2010,
12, 244; (d) Y. F. Suen, H. Hope, M. H. Nantz, M. J. Haddadin and
M. J. Kurth, Tetrahedron Lett., 2006, 47, 7893; (e) W.-D. Rudorf and
R. Schwarz, Synlett, 1993, 369.
7 H. M. Walborsky and M. Schwarz, J. Am. Chem. Soc., 1953, 75, 3241.
8 (a) L.-W. Ye, J. Zhou and Y. Tang, Chem. Soc. Rev., 2008, 37, 1140;
(b) J. L. Methot and W. R. Roush, Adv. Synth. Catal., 2004, 346, 1035;
(c) X. Lu, Y. Du and C. Lu, Pure Appl. Chem., 2005, 77, 1985;
(d) Y. C. Fan and O. Kwon, Chem. Commun., 2013, 49, 11588.
9 (a) X. Lu, C. Zhang and Z. Xu, Acc. Chem. Res., 2001, 34, 535;
(b) C. Zhang and X. Lu, J. Org. Chem., 1995, 60, 2906.
10 Selected examples see: (a) S. W. Smith and G. C. Fu, J. Am. Chem.
Soc., 2009, 131, 14231; (b) Y.-Q. Fang and E. N. Jacobsen,
J. Am. Chem. Soc., 2008, 130, 5660; (c) A. Voituriez, A. Panossian,
N. Fleury-Bregeot, P. Retailleau and A. Marinetti, J. Am. Chem. Soc.,
2008, 130, 14030; (d) B. J. Cowen and S. J. Miller, J. Am. Chem. Soc.,
2007, 129, 10988; (e) R. P. Wurz and G. C. Fu, J. Am. Chem. Soc., 2005,
127, 12234.
11 J.-C. Wang and M. J. Krische, Angew. Chem., Int. Ed., 2003, 42, 5855.
12 S. A. Frank, D. J. Mergott and W. R. Roush, J. Am. Chem. Soc., 2002,
124, 2404.
13 (a) H. Guo, Q. Xu and O. Kwon, J. Am. Chem. Soc., 2007, 129, 6722;
(b) G. S. Creech and O. Kwon, Org. Lett., 2008, 10, 429.
14 (a) Y. Xia, Y. Liang, Y. Chen, M. Wang, L. Jiao, F. Huang, S. Liu, Y. Li
and Z.-X. Yu, J. Am. Chem. Soc., 2007, 129, 3470; (b) L.-C. Wang,
A. L. Luis, K. Agapiou, H.-Y. Jang and M. J. Krische, J. Am. Chem. Soc.,
2002, 124, 2402; (c) J. Ma, P. Xie, C. Hu, Y. Huang and R. Chen,
Chem. – Eur. J., 2011, 17, 7418.
15 B. M. Trost and G. R. Dake, J. Am. Chem. Soc., 1997, 119, 7595.
16 (a) J.-C. Deng and S.-C. Chuang, Org. Lett., 2011, 13, 2248;
(b) S.-C. Chuang, J.-C. Deng, F.-W. Chan, S.-Y. Chen, W.-J. Huang,
L.-H. Lai and V. Rajeshkumar, Eur. J. Org. Chem., 2012, 2606;
(c) Y.-W. Lin, J.-C. Deng, Y.-Z. Hsieh and S.-C. Chuang, Org. Biomol.
Chem., 2014, 12, 162.
We thank the Ministry of Science and Technology of Taiwan for
supporting this research financially (MOST101-2113-M-009-008).
Notes and references
1 J. March, Advanced Organic Chemistry, Wiley, New York, 4th edn,
1992.
17 A. S. Chavan, J.-C. Deng and S.-C. Chuang, Molecules, 2013, 18, 2611.
18 P.-Y. Tseng and S.-C. Chuang, Adv. Synth. Catal., 2013, 355, 2165.
19 CCDC 901699, 901985, 902919 and 903961 contain the ESI† for 5b,
5ak, 5ar and 5ax.
20 Complete computational aspects of these oligoynoates will be
reported elsewhere.
21 Some of the products are highly fluorescent; for example, lactone 5s
exhibits yellow-green fluorescence with a quantum yield of 0.91.
Upon being equipped with appropriate chelating functionality,
these lactones are effective metal ion chemosensors.
2 M. B. Smith, Organic Synthesis, McGRAW-HILL, INC, New York, 1994.
3 For a review, see: E. Lewandowska, Tetrahedron, 2007, 63, 2107 and
relevant references therein.
4 M. E. Jung, in Organic Synthesis, ed. M. Trost, I. Fleming and
M. F. Semmelhack, Pergamon, Oxford, 1991, vol. 4, pp. 1–67.
5 (a) G. W. Klumpp, A. J. C. Mierop, J. J. Vrielink, A. Brugman and
M. Schakel, J. Am. Chem. Soc., 1985, 107, 6740; (b) C. L. Bumgardner,
J. E. Bunch and M.-H. Whangbo, J. Org. Chem., 1986, 51, 4082;
(c) A. Kamimura, H. Sasatani, T. Hashimoto, T. Kawai, K. Hori and
N. Ono, J. Org. Chem., 1990, 55, 2437; (d) I. L. Knunyants and
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 10580--10583 | 10583