6
Tetrahedron Letters
R2
R1
4. (a) Imamoto, T.; in Lanthanides in Organic Synthesis, Academic
Press: New York, 1994; b) Kobayashi, S. Synlett 1994, 689; (c)
Molander, G. A. Chem. Rev. 1992, 92, 29.
H
O
R2
-
H2O
N
N
5. (a) Kobayashi, S; Manabe, K. Org. Lett. 2001, 3, 165; (b)
Aspinall, H. C.; Dwyer, J. L.; Steiner, A. Organometallics 1999,
18, 1366; (c) Parac-Vogt, T. N.; Pachini, S.; Nockemann, P.;
VanmHecke, K.; Van Meervelt, L.; Binnemans, K. Eur. J. Org.
Chem. 2004, 22, 4560.
H
LaCl3
LaCl3
B
A
R1
C
N
N
NH2
R3
6. (a) Meshram, G. A.; Deshpande, S. S.; Wagh, P. A.; Vala, V. A.
Tetrahedron lett. 2014, 55, 3557; (b) Venkateswarlu, Y.; Ramesh
Kumar, S.; Leelavathi, P. Org. Med. Chem. Lett. 2013, 3, 7; (c)
Chen, Y.; Huang, J.; Hwang, T-L.; Li, T. J.; Cui, S.; Chan, J.;
Bio, M. Tetrahedron Lett. 2012, 53, 3237; (d) Reddy, G. S. S.;
Sammaiah B.; Sharada, L. N. Synth. Commun. 2009, 39, 3905; (e)
Podkolzin, S. G.; Stangland, E. E.; Jones, M. E.; Peringer E.;
Lercher, J. A. J. Am. Chem. Soc. 2007, 129, 2569; (f) Li, Q.;
Wang, S.; Zhou, S.; Yang, G.; Zhu X.; Liu, Y. J. Org. Chem.
2007, 72, 6763; (g) Krasovskiy, A.; Kopp, F.; Knochel, P. Angew.
Chem., Int. Ed. 2006, 45, 497; (h) Lu, J.; Bai, Y.; Wang, Z.;
Yang B.; Ma, H. Tetrahedron Lett. 2000, 41, 9075.
[ 4+1 ]
cycloaddition
-
LaCl3
R2
R1
R2
R1
N
aromatization
N
N
N
N
H
NH
R3
R3
4
C
Figure 2. Plausible reaction mechanism for the synthesis of imidazo[1,2-
a]pyridine 4.
7. Harrison, T. S.; Keating, G. M. CNS Drugs 2005, 19, 65.
8. Langer, S. Z.; Arbilla, S.; Benavides, J.; Scatton, B. Adv. Biochem.
Psychopharmacol. 1990, 46, 61.
A tentative mechanism is proposed (Figure 2). Initially the
aldehyde oxygen gets coordinated with the lanthanum chloride,
9. (a) Bartholini, G. L. E. R. S. Monogr. Ser. 1993, 8, 1; (b)
Bartholini, G. L. E. R. S. Chem. Abstr. 1996, 124, 164079n.
10. Ueda, T.; Mizusgige, K.; Yukiiri, K.; Takahashi, T.; Kohno, M.
Cerebrovasc. Dis. 2003, 16, 396.
which increases the carbonyl electrophilicity.
Then the
aminopyridine condenses with the aldehyde leading to imine,
which is further activated by lanthanum chloride to form Schiff
base B29 and subsequent attack of isocyanide on electrophilic
imine carbon followed by [4+1] cycloaddition30 to form cyclic
adduct C. Finally, the intermediate adduct C undergoes
aromatization via 1,3-H shift to furnish the desired product 4.31
11. Kaminski, J. J.; Wallmark, B.; Briving, C.; Andersson, B. M. J.
Med. Chem. 1991, 34, 533.
12. (a) Holcombe, R. F.; McLaren, C. E.; Milovanovic, T. Cancer
Detect. Prev. 2006, 30, 94; (b) Mun, E. C.; Mayol, J. M.; Riegler,
M.; O’Brien, T. C.; Farokhzad, O. C.; Song, J. C.; Pothoulakis, C.;
Hrnjez, B. J.; Matthews, J. B. Gastroenterology 1998, 114, 1257.
13. Humphries, A. C.; Gancia, E.; Gilligan, M. T.; Goodacre, S.;
Hallett, D.; Merchant, K. J.; Thomas, S. R. Bioorg. Med. Chem.
Lett. 2006, 16, 1518.
In summary, we have successfully developed a highly
efficient lanthanum chloride heptahydrate promoted protocol via
one-pot three component Groebke-Blackburn-Bienaymѐ reaction
to synthesize medicinally and biologically relevant imidazo-fused
polyheterocycles. There are several advantages associated with
this method (i) high yields (ii) easy accessibility of imidazo[1,2-
a]pyridines (iii) wide substrate scope (iv) minimal energy
requirement and (v) short reaction time. This methodology
might prove as a better alternative to the existing literature
methods.
14. (a) Wiegand, M. H. Drugs 2008, 68, 2411; (b) Gudmundsson, K.
S.; Williams, J. D.; Drach, J. C.; Townsend, L. B. J. Med. Chem.
2003, 46, 1449; (c) Kaminsky, J. J.; Doweyko, A. M. J. Med.
Chem. 1999, 40, 427.
15. Blackburn, C. Tetrahedron Lett. 1998, 39, 5469.
16. Bienayme´, H.; Bouzid, K. Angew. Chem., Int. Ed. 1998, 37, 2234.
17. Groebke, K.; Weber, L.; Mehlin, F. Synlett 1998, 661.
18. (a) Chen, J. J.; Golebiowski, A.; Clenaghan, J.; Klopfenstein, S.
R.; West, L. Tetrahedron Lett. 2001, 42, 2269; (b) Shaabani, A.;
Soleimani, E.; Maleki, A.; Moghimi-Rad, J. Synth. Commun.
2008, 38, 1090.
Acknowledgments:
19. Shaabani, A.; Maleki, A.; Rad, J.; Soleimani, E. Chem. Pharm.
Bull. 2007, 55, 957.
Financial support by the Council of Scientific and Industrial
Research (CSIR), New Delhi is gratefully acknowledged. AHS
and MS thank UGC, New Delhi, for the award of research
fellowship.
20. Odell, L. R.; Nilsson, M.; Gising, J.; Lagerlund, O.; Muthas, D.;
Nordqvist, A.; Karlen, A.; Larhed, M. Bioorg. Med. Chem. Lett.
2009, 19, 4790.
21. Shaabani, A.; Soleimani, E.; Sarvary, A.; Rezayan,H.; Maleki, A.
Chin. J. Chem. 2009, 27, 369.
22. Guchhait, S. K.; Maadan, C. Synlett, 2009, 628.
Supplementary Material
Supplementary material associated with this manuscript can
be found in online version as separate electronic file.
23. Rousseau, A. L.; Matlaba, P.; C. J. Parkinson, C. J. Tetrahedron
Lett. 2007, 48, 4079.
24. Rostamnia, S.; Hassankhanib, A. RSC Adv. 2013, 3, 18626.
25. Rostamnia, S.; Lamei, K.; Mohammadquli, M.; Sheykhan. M.;
Heydari, A. Tetrahedron Lett. 2012, 53, 5257.
References and notes
26. Varma R. S.; Kumar, D. Tetrahedron Lett. 1999, 40, 7665.
27. (a) Vidyacharan, S.; Shinde, A. H.; Satpathi, B.; Sharada, D. S.
Green Chem. 2014, 16, 1168; (b) Shinde, A. H.; Vidyacharan, S.
Sharada, D. S. Tetrahedron Lett. 2014, 55, 3064.
1. (a) Multicomponent Reactions, Zhu, J. P.; Bienaymѐ, ed H.;
Wiley-VCH Weinheim, Germany, 2005; (b) Dömling, A.; Wang,
W.; Wang, K. Chem. Rev. 2012, 112, 3083; (c) Der Heijden, G.
V.; Ruijter, R. V.; Orru, A. Synlett 2013, 24, 666; (d) Moliner, F.
D.; Bigatti, M.; Banfi, L.; Riva, R; Basso, A. Org. Lett. 2014, 16
, 2280; (e) Kumar, D.; Kommi, D. N.; Bollineni, N.; Patel, A. R.;
Chakraborti, A. K. Green Chem. 2012, 14, 2038; (f) Ramachary,
B. D.; Sangeeta, J. Org. Biomol. Chem. 2011, 9, 1277; (g) Roy, S.
R.; Jadhavar, P. S.; Seth, K.; Sharma, K. K.; Chakraborti, A. K.
28. (a) Madhavan, S.; Shanmugam, P. Org. Lett. 2011, 13, 1590; (b)
Staveren, D. R. V.; Nolte, N-M. Chem. Rev. 2004, 104, 5931.
29. (a) Our attempts to isolate pure imine from the reaction mixture
failed, however, we have confirmed the imine formation by mass
spectral analysis and also by TLC of reaction mixture with
reference imine (separately prepared); (b) When we have
performed the reaction of reference imine (prepared separately)
with isocyanide 3 in presence of lanthanum chloride as catalyst
gave the product 4 in excellent yield (90%), supporting the
proposed plausible mechanism.
Synthesis 2011, 14, 2261; (h) Bhagat, S.; Chakraborti, A. K.
J. Org. Chem. 2008, 73, 6029; (i) Bhagat, S.; Chakraborti, A. K.
J. Org. Chem. 2007, 72, 1263.
2. (a) Asad, N.; Samarakoon, T. B.; Zang, Q.; Loh, J. K.; Javed, S.;
Hanson, P. R. Org. Lett. 2014, 16, 82; (b) Slobbe, P.; Ruijter, E.;
Orru, R. V. A. Med. Chem. Commun. 2012, 3, 1189; (c) Burke,
M. D.;Schreiber, S. L. Angew. Chem. Int. Ed. 2004, 43, 46.
3. (a) Narayan, R.; Potowski, M.; Jia, Z-J.; Antonchick, A. P.;
Waldmann, H. Acc. Chem. Res., 2014, 47, 1296; (b) Bonne, D.;
Constantieux, T.; Coquerel, Y.; Rodriguez, J. Chem. Eur. J. 2013,
19, 2218.
30. For similar kind of cycloaddition see: Umkehrer, M; Ross, G.;
Jager, N.; Burdack, C.; Kolb, J.; Hu, H.; Alvim-Gastonb, M.;
Hulme, C. Tetrahedron Lett. 2007, 48, 2213.
31. The proposed plausible mechanism is well known mechanism
proposed in the isocyanide-based multicomponent reactions,13-24
which also proposes the intermediate imine formation and further
its transformation to product 4 through similar kind of reaction
mechanism.