Chemistry Letters 2002
107
Table 1. Pseudo-first-order rate constants for the IS of 2 into the
S-Pd bond of 1a
Soc., Dalton Trans., 1975, 2283. For Fe, see: f) W. Imhof and
G. Huttner, J. Organomet. Chem., 447, 31 (1993). g) F. Y.
Petillon, F. L. Floch-Perennou, and J. E. Guerchais, J.
Organomet. Chem., 173, 89 (1979).
1
kobs/sÀ1
1a; Ar¼C6H4Me-p
1c; Ar¼Ph
1:37 Â 10À3
6:52 Â 10À4
2:04 Â 10À4
10 For the IS of isocyanide into S-M bonds, see: H. Kuniyasu, K.
Sugoh, S. Moon, and H. Kurosawa, J. Am. Chem. Soc., 119,
4669 (1997).
1b; Ar¼C6H4Cl-p
aKinetic measurements were conducted in CD2Cl2 at 25 ꢁC.
Initial concentrations are ½1 ¼ 0:016 M and ½2 ¼ 0:19 M.
11 R. S. Paonessa, A. L. Prignano, and W. C. Trogler, Organo-
metallics, 4, 647 (1985).
12 3a: yellow solid (two molecules of benzene per molecule of
1
3a were incorporated in the crystal); mp 124 ꢁC; H NMR
indicated that nucleophilic character of SAr group stabilized the
transition state of the IS of 2 into an S-Pd bond.
(270 MHz, CD2Cl2) ꢀ 1.62–1.80 (br, m, 1 H), 2.10 (s, 3 H),
2.11–2.43 (br, m, 2 H), 2.24 (s, 3 H), 2.46–2.60 (br, m, 1 H),
3.30 (s, 3 H), 3.31 (s, 3 H), 6.46 (d, J ¼ 8:2 Hz, 2 H), 6.66 (d,
J ¼ 8:2 Hz, 2 H), 6.90 (d, J ¼ 8:1 Hz, 2 H), 6.99 (d,
J ¼ 8:1 Hz, 2 H), 7.18–7.60 (m, 26 H), 7.63–7.70 (m, 2 H),
7.76–7.83 (m, 2 H), 8.00–8.07 (m, 2 H); 31P NMR (109 MHz,
CD2Cl2) ꢀ 44.1 (d, JP-P ¼ 23 Hz), 49.4 (d, JP-P ¼ 23 Hz); IR
(KBr) 3457, 3051, 2941, 1723, 1708, 1686, 1543, 1484, 1433,
In summary, the first example of IS of alkyne into an S-Pd
bond has been reported. The secret of success to observe the vinyl
thiolato palladium would be attributable to the utilization of
DMAD as an alkyne. Further studies on the details of IS into S-M
bonds (M¼Pd, Pt) using various ligands and alkynes are now
under investigation.
1222, 1103, 1016, 874, 809, 746, 692, 680, 528, 492 cmÀ1
;
References and Notes
Anal. Calcd for C58H56O4P2PdS2: C, 66.37; H, 5.38; S,
6.11%. Found: C, 66.08; H, 5.41; S, 6.07%.
13 Crystal data for 3b: C56H50Cl2O4P2PdS2 (two molecules of
1
a) H. Kuniyasu, A. Ogawa, S. Miyazaki, I. Ryu, N. Kambe,
and N. Sonoda, J. Am. Chem. Soc., 113, 9796 (1991). b) T.
Kondo, S. Uenoyama, K. Fujita, and T. Mitsudo, J. Am. Chem.
Soc., 121, 482 (1999).
a) T. Kondo and T. Mitsudo, Chem. Rev., 100, 3205 (2000). b)
L. Han and M. Tanaka, J. Chem. Soc., Chem. Commun., 1999,
395.
a) H. Kuniyasu, A. Ogawa, K. Sato, I. Ryu, N. Kambe, and N.
Sonoda, J. Am. Chem. Soc., 114, 5902 (1992). b) A. Ogawa,
M. Takeba, J. Kawakami, I. Ryu, N. Kambe, and N. Sonoda, J.
Am. Chem. Soc., 117, 7564 (1995). c) A. Ogawa, J.
Kawakami, M. Mihara, T. Ikeda, N. Sonoda, and T. Hirao,
J. Am. Chem. Soc., 119, 12380 (1997).
T. Ishiyama, K. Nishijima, N. Miyaura, and A. Suzuki, J. Am.
Chem. Soc., 115, 7219 (1993).
L. Han and M. Tanaka, Chem. Lett., 1999, 863.
L. Han and M. Tanaka, J. Am. Chem. Soc., 120, 8249 (1998).
R. Hua, H. Takeda, S. Onozawa, Y. Abe, and M. Tanaka, J.
Am. Chem. Soc., 123, 2899 (2001).
An alternative pathway: (1) G-M bond formation; (2) cis-IS of
alkynes into M-G bonds; and (3) vinylC-S bond-forming
reductive elimination with regeneration of catalysts is also
possible for all reactions.
The ISs of alkynes into S-M have been reported with other
metals. For Ru, see: a) U. Koelle, C. Rietmann, J. Tjoe, T.
Wagner, and U. Englert, Organometallics, 14, 703 (1995).
For Rh, see: b) Y. Wakatsuki, H. Yamazaki, and H. Iwasaki, J.
Am. Chem. Soc., 95, 5781 (1973). For Mo, see: c) T. R.
Halbert, W. H. Pan, and E. I. Stiefel, J. Am. Chem. Soc., 105,
5476 (1983). For W, see: d) L. Carlton, W. A. W. A. Bakar,
and J. L. Davidson, J. Organomet. Chem., 394, 177 (1990).
For Co, see: e) J. L. Davidson and D. W. A. Sharp, J. Chem.
benzene per molecule of 3b were incorporated in the crystal),
ꢀ
Mw ¼ 1090:38, monoclinic, P21=n(#14), a ¼ 10:2ð1Þ A, b ¼
2
3
ꢁ
ꢀ
ꢀ
ꢀ 3
20:92ð8Þ A, c ¼ 24:27ð7Þ A, ꢁ ¼ 98:6ð5Þ , V ¼ 5098ð65Þ A ,
Z ¼ 4, Dcalcd ¼ 1:421 g/cm3, T ¼ 296 K, Mo Kꢂ, A total of
13093 reflections were measured in which 12420 were
independent (Rint ¼ 0:043). R ¼ 0:078, and Rw ¼ 0:084 for
6566 reflections with I > 3ꢃðIÞ.
14 E-3a: 1H NMR (270 MHz, C6D6) ꢀ 2.04 (s, 3 H), 2.15 (s, 3 H),
3.17 (s, 3 H), 3.44 (s, 3 H), 8.28–8.39 (m, 2 H) (the other peaks
were not assigned because of overlapping with the peaks of Z-
isomer); 31P NMR (109 MHz, C6D6) ꢀ 42.5 (d, JP-P ¼ 26 Hz),
51.5 (d, JP-P ¼ 26 Hz).
4
1
15 7: H NMR (270 MHz, C6D6) ꢀ 1.92 (s, 6 H), 3.16 (s, 6 H),
5
6
7
6.75 (d, J ¼ 8:1 Hz, 4 H), 7.38 (d, J ¼ 8:1 Hz, 4 H); mass
spectrum (EI) m/e 388 (Mþ, 13). HRMS Calcd for
C20H20O4S2 388.0803. Found 388.0802. 8: 1H NMR
(270 MHz, C6D6) ꢀ 1.89 (s, 6 H), 3.26 (s, 6 H), 3.40 (s, 6 H),
6.73 (d, J ¼ 8:4 Hz, 4 H), 7.54 (d, J ¼ 8:4 Hz, 4 H); mass
spectrum (EI) m/e 407 ((M-SAr)þ, 100).
8
16 The complexes 4a and 6a can be tentatively assigned to be
Pd[(EC ¼ CE)n(SAr)](SAr)(DPPE) (n ¼ 2 and 3), respec-
tively. For multiple insertion of DMAD into C-Pd bond, see:
T. Yagyu, K. Osakada, and M. Brookhart, Organometallics,
19, 2125 (2000).
9
17 The kinetic measurement was performed using 0.016 M of 1b.
The initial concentrations of 2 and pseudo-first-order rate
constants of 1b were as follows; 0.19 M, 2:04 Â 10À4 sÀ1
(shown in Table 1); 0.45 M, 4:72 Â 10À4 sÀ1; 0.82 M, 8:86Â
10À4 sÀ1; 1.10 M, 1:16 Â 10À3 sÀ1
.