Crystal Growth & Design
Article
crystallization outcomes. The identity of the solid forms grown
on-chip was confirmed by comparing their Raman spectra with
those of corresponding solid forms crystallized in off-chip
experiments. The COC/PDMS chips used here are also
compatible with X-ray analysis and subsequent structure
determination of solid forms, as we have recently shown for
on-chip protein crystallization.62
Micro- & Nanotechnology Laboratory as well as the Frederick
Seitz Materials Research Laboratory Central Facilities at
University of Illinois at Urbana−Champaign, which is partially
supported by the U.S. Department of Energy under Grants DE-
FG02-07ER46453 and DE-FG02-07ER46471. We thank Dr.
Amit V. Desai and Dr. Daria Khvostichenko for stimulating
discussions and Cassandra Schneider and Jose Gallegos-Lopez
for help in fabrication of microfluidic platforms.
In summary, the platform and protocol for its use presented
in this paper can be applied to broad screening of suitable
cocrystalline solid forms of PCs when only limited amounts of
each PC are available. One can also foresee using this platform
to study the effects of additives such as polymers, surfactants,
and antisolvents on solid form crystallization, crystal morphol-
ogy, and polymorphism of active pharmaceutical ingredients
(APIs) as well as on stabilization of the amorphous forms of
APIs. The solutions in these COC/PDMS-based crystallization-
screening platforms are fully enclosed to minimize solvent loss.
With further modifications to the current platform one could
also perform crystallization screens in which solid form
formation is driven by controlled evaporation of solvent. In
addition, by modifying the relative dimensions of the mixing
zone and the solution chambers multiple supersaturation
profiles can be screened with respect to suitability for solid
form crystallization. In fact, as we have shown previously for
salt and polymorph screening of PCs,28,36 the spatiotemporal
variations in local concentrations of the various chemical
species, and thus in local levels of supersaturation, can be
modeled and correlated with crystal nucleation and growth
events on-chip. The combined results of experiments and
modeling will enhance understanding of what parameters
determine desirable crystallization outcomes for a certain PC,
which in turn will help scale up efforts in later stages of drug
development, if the given PC is found to be promising for
further development.
REFERENCES
■
(1) Good, D. J.; Rodríguez-Hornedo, N. Cryst. Growth Des. 2009, 9,
2252−2264.
(2) Childs, S. L.; Chyall, L. J.; Dunlap, J. T.; Smolenskaya, V. N.;
Stahly, B. C.; Stahly, G. P. J. Am. Chem. Soc. 2004, 126, 13335−13342.
(3) Aakeroy, C. B.; Salmon, D. J. CrystEngComm 2005, 7, 439−448.
(4) Schultheiss, N.; Newman, A. Cryst. Growth Des. 2009, 9, 2950−
2967.
́ ́
(5) Fabian, L. s. Cryst. Growth Des. 2009, 9, 1436−1443.
(6) Musumeci, D.; Hunter, C. A.; Prohens, R.; Scuderi, S.; McCabe,
J. F. Chem. Sci. 2011, 2, 883−890.
(7) Remenar, J. F.; Morissette, S. L.; Peterson, M. L.; Moulton, B.;
MacPhee, J. M.; Guzman, H. R.; Almarsson, O. J. Am. Chem. Soc. 2003,
125, 8456−8457.
(8) Goh, L.; Chen, K.; Bhamidi, V.; He, G.; Kee, N. C. S.; Kenis, P. J.
A.; Zukoski, C. F.; Braatz, R. D. Cryst. Growth Des. 2010, 10, 2515−
2521.
(9) Childs, S. L.; Rodriguez-Hornedo, N.; Reddy, L. S.; Jayasankar,
A.; Maheshwari, C.; McCausland, L.; Shipplett, R.; Stahly, B. C.
CrystEngComm 2008, 10, 856−864.
(10) Desrosiers, P. J. Modern Drug Discovery 2004, 40−43.
(11) Gagniere, E.; Mangin, D.; Puel, F. o.; Bebon, C.; Klein, J.-P.;
Monnier, O.; Garcia, E. Cryst. Growth Des. 2009, 9, 3376−3383.
(12) ter Horst, J. H.; Deij, M. A.; Cains, P. W. Cryst. Growth Des.
2009, 9, 1531−1537.
(13) Weyna, D. R.; Shattock, T.; Vishweshwar, P.; Zaworotko, M. J.
Cryst. Growth Des. 2009, 9, 1106−1123.
(14) Alhalaweh, A.; Velaga, S. P. Cryst. Growth Des. 2010, 10, 3302−
ASSOCIATED CONTENT
* Supporting Information
3305.
■
(15) Friscic, T.; Childs, S. L.; Rizvi, S. A. A.; Jones, W.
CrystEngComm 2009, 11, 418−426.
S
Protocols for introducing solutions in the microfluidic platform,
Raman spectra for all materials that the microfluidic platform is
comprised of, and procedure for background correction of
Raman spectrum of on-chip grown crystals, comparison of
Raman spectra for off-chip and on-chip grown crystals,
comparison of PXRD patterns for solid forms crystallized
using our off-chip experiments to PXRD pattern for intended
cocrystals available in the literature, Raman spectra for caffeine
solid form crystallized in the presence of ethylene diamine, and
a movie demonstrating the combinatorial mixing capability of
the microfluidic platform is provided. This material is available
(16) Zhang, G. G. Z.; Henry, R. F.; Borchardt, T. B.; Lou, X. J.
Pharm. Sci. 2007, 96, 990−995.
(17) Nehm, S. J.; Rodríguez-Spong, B.; Rodríguez-Hornedo, N. Cryst.
Growth Des. 2005, 6, 592−600.
(18) Rodríguez-Hornedo, N.; Nehm, S. J.; Seefeldt, K. F.; Pagan-
Torres, Y.; Falkiewicz, C. J. Mol. Pharmaceutics 2006, 3, 362−367.
(19) Trask, A. V.; Jones, W. Crystal Engineering of Organic
Cocrystals by the Solid-State Grinding Approach. In Organic Solid
State Reactions; Toda, F., Ed.; Springer: Berlin/Heidelberg: 2005; Vol.
254, pp 41−70.
(20) Friscic, T.; Jones, W. Cryst. Growth Des. 2009, 9, 1621−1637.
(21) Karki, S.; Friscic, T.; Jones, W.; Motherwell, W. D. S. Mol.
Pharmaceutics 2007, 4, 347−354.
(22) Trask, A. V.; Motherwell, W. D. S.; Jones, W. Chem. Commun.
2004, 890−891.
AUTHOR INFORMATION
Corresponding Author
■
(23) Lu, E.; Rodriguez-Hornedo, N.; Suryanarayanan, R. CrystEng-
Comm 2008, 10, 665−668.
*(P.J.A.K.) Phone: (217) 265-0523. Fax: (217) 333-5052. E-
(24) Berry, D. J.; Seaton, C. C.; Clegg, W.; Harrington, R. W.; Coles,
S. J.; Horton, P. N.; Hursthouse, M. B.; Storey, R.; Jones, W.; Friscic,
T.; Blagden, N. Cryst. Growth Des. 2008, 8, 1697−1712.
(25) Hansen, C. L.; Skordalakes, E.; Berger, J. M.; Quake, S. R. Proc.
Natl. Acad. Sci. U. S. A. 2002, 99, 16531−16536.
(26) Thorsen, T.; Maerkl, S. J.; Quake, S. R. Science 2002, 298, 580−
584.
Notes
The authors declare no competing financial interest.
(27) Schudel, B. R.; Choi, C. J.; Cunningham, B. T.; Kenis, P. J. A.
Lab Chip 2009, 9, 1676−1680.
(28) Thorson, M. R.; Goyal, S.; Schudel, B. R.; Zukoski, C. F.; Zhang,
G. G. Z.; Gong, Y.; Kenis, P. J. A. Lab Chip 2011, 11, 3829−3837.
ACKNOWLEDGMENTS
■
We would like to thank Abbott Laboratories for financial
support. Part of this work made use of the facilities in the
6033
dx.doi.org/10.1021/cg3011212 | Cryst. Growth Des. 2012, 12, 6023−6034