Cycloalkylidene Carboxylic Acids as Effectors
J ournal of Medicinal Chemistry, 2002, Vol. 45, No. 7 1541
added, and the mixture was refluxed for several hours. After
the mixture was cooled to room temperature, the solvent was
evaporated and the crude product was distillated by means of
bulb to bulb distillation; 888 mg (42.28%); bp 103 °C, 19 mbar.
(C-2′; C-6′), 31.11, 30.07 (C-3′, C-5′), 28.92 (C-7′), 15.31 (C-3),
11.70 (C-8′). MS m/z 182, 108, 79, 81, 67, 56. Anal. (C11H18O2)
C, H.
2-(4-P r op ylcycloh exylid en )p r op a n oic Acid (9). 59.55%;
IR 2820, 1725, 1425, 1385, 1270 cm-1 1H NMR (CDCl3): δ
.
1
mp 46 °C. IR 2900, 2600, 1670, 1620 cm-1. H NMR (DMSO):
9.80 (d, J ) 8.08 Hz, 1H, CHO), 5.57 (d, J ) 7.84 Hz, 1H, Cd
CH), 2.65 (t, J ) 5.89 Hz, 2H, CH2-CdC), 2.42 (t, J ) 5.52
Hz, 2H, CH2-CdC), 1.76-1.59 (m, 8H, (CH2)4). Anal. (C9H14O)
C, H.
δ 12.18 (s, 1H, CO2H), 2.77 (m, 2H, CH2-CdC), 2.53 (m, 2H,
CH2-CdC), 1.88-1.70 (m, 4H, CH2-C-CH2), 1.75 (s, 3H,
CH3-C-CO), 1.43 (m, 1H, CH), 1.29 (m, 2H, CH2-C-
Cyclohexyl), 1.14 (m, 2H, CH2-Cyclohexyl), 0.84 (t, J ) 7.16
Hz, 3H, CH3). 13C NMR (DMSO): δ 171.42 (C-1), 145.96
(C-1′), 120.47 (C-2), 38.62 (C-7′), 36.74 (C-4′), 34.20, 33.75
(C-2′; C-6′), 31.12, 30.13 (C-3′; C-5′), 19.92 (C-8′), 15.36 (C-9′),
14.49 (C-3). MS m/z 196, 162, 153, 122, 111, 100, 81, 79, 56,
44. Anal. (C12H20O2) C, H.
2-Cycloh exylid en bu ta n oic Acid (4).23 A 5.2 g (29 mmol)
amount of 23 in 6.0 mL of acetic anhydride were heated at
150 °C for 3 h. After the mixture was cooled to room
temperature, the solution was given into a big amount of water
and subjected to steam distillation. The distillate was cooled
to 0 °C during which the acid crystallized. The crystals were
washed and dried under vacuum; 404 mg (8.1%); mp 49 °C.
2-[4-(ter t-Bu t yl)cycloh exylid en ]p r op a n oic Acid (10).
1
48.32%; mp 114 °C. IR 2910, 2600, 1680, 1630 cm-1. H NMR
IR 2900, 2600, 1650, 1600, 1430, 1280, 1230, 1200, 930 cm-1
.
(DMSO): δ 12.14 (s, 1H, CO2H), 2.87 (m, 2H, CH2-CdC),
1.88-1.65 (m, 4H, CH2-C-CH2), 1.75 (s, 3H, CH3-C-CO),
1.20 (m, 1H, CH), 0.99 (m, 2H, CH2-CdC), 0.80 (s, 9H,
C(CH3)3). 13C NMR (DMSO): δ 171.08 (C-1), 146.04 (C-1′),
120.20 (C-2), 47.55 (C-4′), 32.41, 31.57, 30.67, 28.66, 28.26
(C-2′; C-3′; C-5′; C-6′; C-1′′), 27.66 (3 × CH3), 15.35 (C-3). MS
m/z 211, 210, 166, 195, 154, 139, 136, 125, 57. Anal. (C13H22O2)
C, H.
1H NMR (DMSO): δ 12.14 (s, 1H, CO2H), 2.33 (t, J ) 5.46
Hz, 2H, CH2-CdC), 2.21 (t, J ) 7.54 Hz, 2H, CH2-C-C-O),
2.15 (t, J ) 6.03 Hz, 2H, CH2-CdC), 1.51 (m, 6H, CH2-CH2-
CH2), 0.91 (t, J ) 7.54 Hz, 3H, CH3). 13C NMR (DMSO): δ
176.10 (C-1), 151.87 (C-1′), 125.73 (C-2), 32.74; 31.72, 28.50,
28.50, 26.57, 22.75 (C-2′; C-3′; C-4′; C-5′; C-6′; C-3), 11.37 (C-
4). MS m/z 169, 155, 151, 124, 108, 95, 81, 68. Anal. (C10H16O2)
C, H.
2-(4-P h en ylcycloh exyliden )pr opan oic Acid (11). 69.35%;
mp 146 °C. IR 3000, 2900, 2530, 1670, 1640, 1600, 790 cm-1
.
Gen er a l P r oced u r e for Com p ou n d s 5-14.20 To a sus-
pension of 31 mmol of NaH in 100 mL of dry glyme (argon
atmosphere), 4.0 mL (31 mmol) of diethyl phosphite was slowly
added. After the gas development had ceased, 31 mmol of the
2-bromocarboxylic acid, dissolved in 30 mL of dry glyme, was
added carefully and the solution was stirred until no more gas
development occurred. Afterward, 31 mmol of the cyclo-
alkanone was added dropwise and the mixture was stirred for
an additional hour. The reaction was stopped by adding 5 mL
of ethanol, and the mixture was tilted into a big excess of ice-
cold water. After it was extracted with ether, the aqueous layer
was brought to pH 4 with concentrated HCl and extracted once
again with ether. The organic layer was dried over magnesium
sulfate, and the solvent was evaporated. The resulting acid
was purified by recrystallization or flash chromatography.
2-Cycloh exylid en p r op a n oic Acid (5).20 41.72%; mp 78
°C. IR 3400, 2900, 1670, 1600 cm-1. 1H NMR (CDCl3): δ 11.70
(s, 1H, CO2H), 2.59 (t, J ) 5.86 Hz, 2H, CH2-CdC), 2.25 (t, J
) 5.86 Hz, 2H, CH2-CdC), 1.88 (s, 3H, CH3), 1.68-1.50 (m,
6H, CH2-CH2-CH2). 13C NMR (DMSO): δ 175.99 (C-1),
152.89 (C-1′), 118.60 (C-2), 32.38, 32.06 (C-2′; C-6′), 27.33,
27.83 (C-3′; C-5′), 26.39 (C-4′), 15.06 (C-3). MS m/z 154, 136,
111, 109, 81. Anal. (C9H14O2) C, H.
1H NMR (DMSO): δ 12.25 (s, 1H, CO2H), 7.28-7.01 (m, 5H,
Ar), 3.19 (m, 2H, CH2-CdC), 2.76 (m, 2H, CH2-CdC), 1.93
(m, 4H, CH2-C(Ar)-CH2), 1.81 (s, 3H, CH3), 1.45 (m, 1H, CH).
13C NMR (DMSO): δ 171.45 (C-1), 146.58 (C-1′), 144.73
(C-1′′), 128.62 (C-3′′; C-5′′), 126.99 (C-2′′; C-6′′), 126.27 (C-4′′),
121.15 (C-2), 43.79 (C-4′), 35.24, 34.84 (C-2′; C-6′), 31.62, 30.57
(C-3′; C-5′), 15.49 (C-3). MS m/z 230, 161, 122, 111, 100, 91,
79, 77, 44. Anal. (C15H18O2) C, H.
2-[4-(4-Meth oxyph en yl)cycloh exyliden ]pr opan oic Acid
(12). Adduct 21 was used to give 12; 21.43%; mp 138 °C. IR
3000, 2900, 2560, 1680, 1660, 1610, 1510, 1280, 1240, 1180,
1030, 810 cm-1. 1H NMR (CDCl3): δ 12.27 (s, 1H, CO2H), 7.12
(d, J ) 8.58 Hz, 2H, AA′), 6.83 (d, J ) 8.82 Hz, 2H, BB′), 3.78
(s, 3H, CH3), 3.50 (m, 1H, CH-Ar), 2.76 (m, 2H, CH2-CdC),
2.10-1.95 (m, 4H, CH2-C-CH2), 1.95 (s, 3H, CH3), 1.63-1.48
(m, 2H, CH2-CdCH). 13C NMR (DMSO): δ 171.48 (C-1),
157.81 (C-4′′), 144.76 (C-1′), 138.58 (C-1′′), 127.84 (C-2′′; C-6′′),
121.07 (C-2), 114.02 (C-3′′; C-5′′), 55.26 (C-1′′′), 42.92 (C-4′),
35.49, 35.09 (C-2′; C-6′), 31.66, 30.58 (C-3′; C-5′), 15.49 (C-3).
MS m/z 260, 215, 186, 147, 134, 126, 107. Anal. (C16H20O2) C,
H.
2-Cyclop en tylid en p r op a n oic Acid (13).23 21.53%; mp
100 °C. IR 2960, 2600, 1720, 1660, 1620, 1430, 1290, 730, 600,
2-(3-Meth ylcycloh exylid en )p r op a n oic Acid (6). 10.56%;
1
440 cm-1. H NMR (CDCl3): δ 11.43 (s, 1H, CO2H), 2.76 (t, J
mp 76 °C. IR 2840, 2600, 1650, 1430, 1380, 1270, 1210, 1100
) 6.40 Hz, 2H, CH2-CdC), 2.39 (t, J ) 6.40 Hz, 2H, CH2-
CdC), 1.86 (s, 1H, CH3), 1.70 (m, 4H, CH2-CH2). 13C NMR
(DMSO): δ 173.93 (C-1), 164.33 (C-1′), 118.01 (C-2), 34.66 (C-
2′; C-5′), 27.13, 25.52 (C-3′; C-4′); 15.83 (C-3). MS m/z 140, 95,
79, 67. Anal. (C8H12O2) C, H.
1
cm-1. H NMR (DMSO): δ 12.15 (s, 1H, CO2H), 2.48 (m, 4H,
2 × CH2-CdC), 1.76 (s, 3H, CH3-C-C-O), 1.86-0.99 (m, 5H,
CH2-CH2-CH), 0.99 (dd, J ) 6.40 Hz, 3H, CH3). 13C NMR
(DMSO): δ 171.50 (C-1), 145.17 (C-1′), 120.80, 34.58, 31.45
(C-2′; C-6′), 33.72 (C-3′), 30.25 (C-4′), 26.88 (C-5′), 22.37 (C-
7′), 15.35 (C-3). MS m/z 168, 150, 135, 123, 112, 111, 100, 95.
Anal. (C10H16O2) C, H.
2-Cyclop en tylid en a cetic Acid (14).16 3.5%; mp 51 °C. IR
3180, 3080, 2960, 1680, 1630, 860 cm-1 13C NMR (CDCl3): δ
.
168.08 (C-1), 167.65 (C-1′), 112.44 (C-2), 35.54, 32.44 (C-2′;
C-5′), 26.19, 25.29 (C-3′; C-4′). MS m/z 126, 125, 108, 97, 81,
80, 79, 71, 68, 67, 52. Anal. (C7H10O2) C, H.
2-(4-Meth ylcycloh exylid en )p r op a n oic Acid (7). 8.5%;
mp 54 °C. IR 2840, 2550, 1650, 1610, 1430, 1380, 1270, 920
1
cm-1. H NMR (DMSO): δ 12.17 (s, 1H, CO2H), 2.98 (m, 1H,
CH2-CdC), 2.52 (m, 1H, CH2-CdC), 1.86-1.69 (m, 4H, CH2-
C-CH2), 1.75 (s, 3H, CH3-C-C-O), 1.56 (m, 1H, CH), 0.96
(m, 2H, CH2-CdC), 0.85 (d, J ) 6.40 Hz, 3H, CH3). 13C NMR
(DMSO): δ 171.45 (C-1), 145.48 (C-1′), 120.64 (C-2), 36.20,
35.73 (C-2′; C-6′), 32.12 (C-4′), 31.15, 30.09 (C-3′; C-5′), 21.96
(C-7′), 15.40 (C-3). MS m/z 168, 150, 139, 135, 125, 123, 111,
108, 100, 94. Anal. (C10H16O2) C, H.
Ack n ow led gm en t. We are grateful to C. Block and
A. Wittinghofer for providing yeast two-hybrid plasmids.
This work was supported by grants from the Deutsche
Forschungsgesellschaft.
Refer en ces
2-(4-Eth ylcycloh exylid en )p r op a n oic Acid (8). 14.39%;
mp 41 °C. IR 2900, 2500, 1650, 1600, 1270, 1220 cm-1. 1H NMR
(DMSO): δ 12.16 (s, 1H, CO2H), 3.03 (m, 2H, CH2-CdC), 2.53
(m, 2H, CH2-CdC), 1.82 (m, 4H, CH2-C-CH2), 1.75 (s, 3H,
CH3-C-CO), 1.32 (m, 1H, CH), 1.18 (m, 2H, CH2-Cyclohexyl),
0.84 (t, J ) 7.16 Hz, 3H, CH3). 13C NMR (DMSO): δ 171.42
(C-1), 145.89 (C-1′), 120.50 (C-2), 38.74 (C-4′), 33.80, 33.35
(1) Ellis, R. W.; DeFeo, D.; Shih, T. Y.; Gonda, M. A.; Young, H. A.
Tsuchida, N.; Lowy, D. R.; Scolnick, E. M. The p21 src genes of
Harvey and Kirsten sarcoma viruses originate from divergent
members of a family of normal vertebrate genes. Nature 1981,
292, 506-511.
(2) Campbell, S. L.; Khosravi-Far, R.; Rossman, K. L.; Clark, G. J .;
Der, C. J . Increasing complexity of Ras signaling. Oncogene 1998,
17, 1395-1413.