10.1002/cmdc.201700167
ChemMedChem
COMMUNICATION
in each well of the 96-well microtiter plate. The plates were incubated at
37 °C for 24 h with shaking at 300 rpm. For C. albicans, the incubation
was at room temperature for 48 h. The MICs were taken as the
concentration of the antimicrobial oligomer at which no microbial growth
was observed with the microplate reader. Broth solution containing
microbial cells alone was used as negative control. Experiments were run
in quadruplicates.
Time-kill studies: E. coli were grown overnight in TSB at 37 ºC. Cells
were diluted to 2 ~ 5 x 108 CFU/mL, and a 100 μL of this suspension was
then added to TSB broth or broth containing 125 ppm of polymer,
respectively. Sampling aliquots were withdrawn from cultures at 1, 3, 6
and 24 h after the addition of imidazolium compounds. The aliquots were
plated on solid LB plates and incubated at 37 ºC overnight before the
colony number was counted. Data from duplicate plate counts were
averaged, and the resulting values were plotted on a log scale against
time. Experiments were run in triplicates.
[4]
[5]
F. Guo, S. J. Zhang, J. J. Wang, B. T. Teng, T. Y. Zhang, M. H. Fan,
Curr. Org. Chem. 2015, 19, 455-468.
a) D. Mecerreyes, Prog. Polym. Sci. 2011, 36, 1629-1648; b) H. Srour, L.
Chancelier, E. Bolimowska, T. Gutel, S. Mailley, H. Rouault, C. C.
Santini, J. Appl. Electrochem. 2016, 46, 149-155; c) D. Demberelnymba,
K.-S. Kim, S. Choi, S.-Y. Park, H. Lee, C.-J. Kim, I.-D. Yoo, Bioorg.
Med. Chem. 2004, 12, 853-857; d) J. Pernak, K. Sobaszkiewicz, H.
Mirska, Green Chem. 2003, 5, 52-56; e) N. Gathergood, M. T. Garcia,
P. J. Scammells, Green Chem. 2004, 6, 166-175; f) S. Kankilal, S.
Sunitha, P. S. Reddy, K. P. Kumar, U. S. N. Murty, R. B. N. Prasad, Eur.
J. Lipid. Sci. Technol. 2009, 111, 941-948; g) M. T. Garcia, I. Ribosa, L.
Perez, A. Manresa, F. Comelles, Langmuir 2013, 29, 2536-2545; h) S.
Morrissey, B. Pegot, D. Coleman, M. T. Garcia, D. Fegursoon, B. Quilty,
N. Gathergood, Green Chem. 2009, 11, 475-483.
[6] a) S. N. Riduan, Y. Zhang, Chem. Soc. Rev. 2013, 42, 9055-9070; b) W.
Liu, R. Gust, Coord. Chem. Rev. 2016, 329, 191-213; c) K. M. Hindi, M.
J. Panzner, C. L. Cannon, W. J. Youngs, Chem. Rev. 2009, 109, 3859-
3884; d) L. Mercsa and M. Albrecht, Chem. Soc. Rev. 2010, 39, 1903-
1912; e) K. Goossens, K. Lava, C. W. Bielawski, K. Binnemans, Chem.
Rev. 2016, 116, 4643-4807; f) Z. Q. Zheng, Q. M. Xu, J. N. Guo, J. Qin,
H. L. Mao, B. Wang, F. Yan, ACS Appl. Mater. Interfaces 2016, 8,
12684-12692; g) D. F. Dalla Lana, R. K. Donato, C. Buendchen, C. M.
Guez, V. Z. Bergamo, L. F. S. de Oliveira, M. M. Machado, H. S.
Schrekker, A. M. Fuentefria, J. Appl. Microbiol. 2016, 119, 377-388.
Hemolysis:
Fresh rat red blood cells (RBCs) were diluted with PBS
buffer to give a RBC stock suspension (4 vol% blood cells). 100 μL
aliquot of RBC stock was added to a 96-well plate containing 100 μL
oligomer stock solutions of various concentrations (obtained from serial
2-fold dilution in PBS). After incubating for 1 h at 37°C, The contents of
each well were pipetted into a microcentrifuge tube and then centrifuged
at 4000 rpm for 5 min. Hemolytic activity was determined as a function of
hemoglobin release by measuring OD576 of 100 mL of the supernatant.
A control solution that contained only PBS was used as a reference for
0% hemolysis. 100% hemolysis was measured by adding 0.5% Triton-X
to the RBCs. Experiments were run in quadruplicates.
[7]
a) M. C. Jahnke, F. E. Hahn, Coord. Chem. Rev. 2015, 293, 95-115; b)
F. D’Anna, P. Vitale, S. Marullo, R. Noto. Langmuir 2012, 28, 10849-
10859.
[8]
[9]
C. I. Ezugwu, N. A. Kabir, M. Yusubov, F. Verpoort, Coord. Chem. Rev.
2016, 307, 188-210.
OD576polymer OD576blank
Hemolysis(%)
100
a) L. Liu, Y. Huang, S. N. Riduan, S. Gao, Y.-Y Yang, W. Fan, Y. Zhang,
Biomaterials, 2012, 33, 8525-8631; b) L. Liu, H. Wu, S. N. Riduan, Y.
Zhang, J. Y. Ying, Biomaterials 2013, 34, 1018-1023.
OD576TritonX100 OD576blank
SEM observation: The morphologies of the microbes were observed
using field emission SEM (JEOL JSM-7400F) operated at an
[10] M. Gindri, D. A. Siddiqui, P. Bhardwaj, L. C. Rodriguez, K. L. Palmer, C.
a
P. Frizzo, M. A. P. Martins, D. C. Rodrigues, RSC Adv. 2014, 4, 62594.
accelerating voltage of 5 keV. E. coli cells (3×108 CFU/ml), with or
without imidazolium compounds (62.5 ppm), were grown in TSB for 3 h.
The mixtures were collected and centrifuged at 5000 rpm for 6 min. The
precipitate was washed with PBS buffer and then fixed with
paraformaldehyde (2.5% in PBS) for 3 h, followed by washing with DI
water twice. Dehydration of the samples was performed using a series of
ethanol/water solution (35%, 50%, 75%, 90%, 95% and 100%). The
dehydrated samples were mounted on copper tape. After drying for 2
days, the samples were coated with platinum for imaging with JEOL
JSM-7400F (Japan) field emission SEM.
[11]
P. Cancemi, M. Buttacavoli, F. D’Anna, Salvatore Feo, R. M. Fontana,
R. Noto, A. Sutera, Paola Vitale,G. Gallo, New J. Chem. 2017, DOI:
10.1039/C6NJ03904A.
[12]
N. N. Al-Mohammed, Y. Alias, Z. Abdullah, RSC Adv. 2015, 5, 92602.
[13] S. N. Riduan, Y. Yuan, F. Zhou, J. Leong, H. B. Su, Y. G. Zhang, Small
2016, 12, 1928-1934.
[14]
[15]
C. A. Arias, B. E. Murray, N. Engl. J. Med. 2009, 360, 439-443.
a) Scientific Committee on Consumer Safety of the European
Commission: “Opinion on Triclosan Antimicrobial Resistance: 5.1
Triclosan in cosmetics”; b) U.S. Food and Drug Administration website:
“Triclosan: What Consumers Should Know”.
[16]
J. G. Hurdle, A. J. O’Niell, I. Chopra, R. E. Lee, Nat. Rev. Microbiol.
2011, 9, 62-75.
Acknowledgements
[17] Selected reviews: a) K. M. G. O’Connell, J. T. Hodgkinson, H. F. Sore,
M. Welch, G. P. C. Salmond, D. R. Spring, Angew. Chem. Int. Ed. 2013,
52, 10706-10733; b) G. N. Tew, R. W. Scott, M. L. Klein, W. F.
DeGrado, Acc. Chem. Res. 2010, 43, 30–39; c) A. C. Engler, N.
Wiradharma, Z. Y. Ong, D. J. Coady, J. L. Hedrick, Y.-Y. Yang,
NanoToday 2012, 7, 201-222; d) A. Munoz-Bonilla, M. Fernandez-
Garcia, Prog. Polym. Sci. 2012, 37, 281-339; e) E. R. Kenawy, S. D.
Worley, R. Broughton, Biomacromolecules 2007, 8, 1359-1384; f) H.
Takahashi, E. F. Palermo, K. Yasuhara, G. A. Caputo, K. Kuroda,
Macromol. Biosci. 2013, 13, 1285-1299; g) L. Timofeeva, N.
Kleshcheva, Appl. Microbiol. Biotechnol. 2011, 89, 475-492.
This work was supported by the Institute of Bioengineering and
Nanotechnology, Biomedical Research Council, SERC Personal
Care Programme, Agency for Science, Technology and
Research.
Keywords: imidazolium oligomer • structural design •
antimicrobial
References:
[18] M. S. Ganewatta, C. Tang, Polymer 2015, 63, A1-A29.
[19]
[20]
[21]
Y. Zhang, L. Zhao, P. K. Patra, D. Hu, J. Y. Ying, Nano Today 2009, 4,
13-20.
[1]
2009, 109, 3612-3676; c) W. A. Herrmann, Angew. Chem. Int. Ed. 2002,
41, 1290-1309; d) H. D. Velazquez, F. Verpoort, Chem. Soc. Rev. 2012,
41, 7032-7060.
B. H. Hamilton, K. A. Kelly, T. A. Wagler, M. P. Espe, and C. J. Ziegler,
Inorg. Chem. 2004, 43, 50-56.
K. Lienkamp, A. E. Madkour, G. N. Tew, J. Am. Chem. Soc. 2008, 130,
9836-9843.
[2]
[3]
a) L. Yang, H. Wang, ChemSusChem 2014, 7, 962-998; b) Y.G. Zhang,
J. Y. G. Chan, Energy Environ. Sci. 2010, 3, 408-417; c) S. B. Wang, X.
Wang, Angew. Chem. Int. Ed. 2016, 55, 2308-2320.
R. S. Menon, A. T. Biju, V. Nair, Chem. Soc. Rev. 2015, 44, 5040-5052.
4
This article is protected by copyright. All rights reserved.