Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
Liu, Y. Shen, Z. Zhou and X, Lu, Angew. Chem. Int. Ed., 2013, 52, 6033;
undergoes decarboxylation and protonation to give isolable
rhodacycle 7. The generation of 10 was supported by the
formation of 6 in the presence of MeOH (Scheme 2; eq. 1).
Finally, HCl elimination of 7 forms five membered rhodacyle 11,
and then alkyne insertion followed by reductive elimination of
12 provides 4aa (Scheme 2). Under the [Cp*RhCl2]2 catalysed
conditions, the decarboxylation of isoxazolyl-4-carboxylic acid
1a (in the absence of alkyne 2a) was observed in the presence
of Ag2CO3, whereas the decomposition of 1a was observed in
the presence of Cu(OAc)2•H2O. These observations suggest that
Cu(OAc)2•H2O not only acts as an oxidant but also assists N-O
cleavage to generate intermediate 9 in the catalytic cycle.
In conclusion, we have developed an efficient Rh(III)-
catalyzed oxidative couplings of isoxazolyl-4-carboxylic acids 1
with internal alkynes 2 for the synthesis of pyranoisoxazolones
3 and isoquinolines 4 in good to excellent yields. Choice of
oxidizing agents is essential to control both transformations of
pyranoisoxazolones and isoquinolines. We have also developed
decarboxylative approach for hydroarylation of alkynes 5 using
Rh(III) catalyst, where carboxylic group acts as deciduous
group/traceless directing group after C-H functionalization. This
is the first to report for the synthesis of pyranoisoxazolones 3
and hydroarylation of alkynes 5 from isoxazolyl-4-carboxylic
acids and alkynes. The broad substrate scope, high efficiency
and good regioselectivity make these reactions more useful in
the drug discovery process of isoxazole containing fused
heterocycles and isoquinolines.
(d) M. Font, J. M. Quibell, G. J. P. Perry and I. Larossa, Chem. Commun.,
DOI: 10.1039/C9CC03283E
2017, 53, 5584.
4
(a) K. Ueura, T. Satoh and M. Miura, Org. Lett., 2007, 9, 1407; (b) K.
Ueura, T, Satoh and M. Miura, J. Org. Chem., 2007, 72, 5362.
Y. Yu, L. Huang, W. Wu and H. Jiang, Org. Lett., 2014, 16, 2146.
(a) L. Ackermann, J. Pospech, K. Graczyk and K. Rauch, Org. Lett.,
2012, 14, 930; (b) R. K. Chinnagolla and M. Jeganmohan, Chem.
Commun., 2012, 48, 2030; (c) R. Prakash, K. Shekarrao and S. Gogoi,
Org. Lett., 2015, 17, 5264.
D. A. Frasco, C. P. Lilly, P. D. Boyle and E. A. Ison, ACS Catal., 2013, 3,
2421.
T. T. Nguyen, L. Grigojeva and O. Daugulis, Angew. Chem. Int. Ed.,
2018, 57, 1688.
5
6
7
8
9
J. Zhang, R. Shrestha, J. F. Hartwig and P. Zhao, Nat. Chem., 2016, 8,
1144.
10 (a) L. Huang, A. Biafora, G. Zhang, V. Bragoni and L. J. Goossen, Angew.
Chem. Int. Ed., 2016, 55, 6933; (b) N. Y. Phani Kumar, A. Bechtoldt, K.
Raghuvanshi and L. Ackermann, Angew. Chem. Int. Ed., 2016, 55,
6929; (c) A. Biafora, B. A. Khan, J. Bahri, J. M. Hewer and L. J. Goossen,
Org. Lett., 2017, 19, 1232. (d) X.-Q. Hu, Z. Hu, A. S. Trita, G. Zhang and
L. J. Goossen, Chem. Sci., 2018, 9, 5289; (e) M. Simonetti and I.
Larossa, Nat. Chem., 2016, 8, 1086.
11 (a) A. Maehara, H. Tsurugi, T. Satoh and M. Miura, Org. Lett., 2008,
10, 1159; (b) S. Mochida, K. Hirano, T. Satoh and M. Miura, Org. Lett.,
2010, 12, 5776. (c) C. Wang, S. Rakshit and F. Glorius, J. Am. Chem.
Soc., 2010, 132, 14006; (d) J. Cornella, M. Righi and I. Larossa, Angew.
Chem. Int. Ed., 2011, 50, 9429; (e) S. Bhadra, W. I. Dzik and L. J.
Goossen, Angew. Chem. Int. Ed., 2013, 52, 2959; (f) P. Mamone, G.
Danoun and L. J. Goossen, Angew. Chem. Int. Ed., 2013, 52, 6704; (g)
J. Luo, S. Preciado and I. Larossa J. Am. Chem. Soc., 2014, 136, 4109;
(h) Y. Quan and Z. Xie, J. Am. Chem. Soc., 2014, 136, 15513; (i) X. Qin,
D. Sun, Q. You, Y. Cheng, J. Lan and J. You, Org. Lett., 2015, 17, 1762.
(j) Y. Zhang, H. Zhao, M, Zhang and W. Su, Angew. Chem. Int. Ed.,
2015, 54, 3817; (k) X.-Y. Shi, K.-Y. Liu, J. Fan, X.-F. Dong, J.-F. Wei and
C.-J. Li, Chem. Eur. J., 2015, 21, 1900; (l) X.-Y. Shi, X.-F. Dong, J. Fan, K.-
Y. Liu, J.-F. Wei and C.-J. Li, Sci. China Chem., 2015, 58, 1286.
12 For recent reviews, see: (a) F. Hu and M. Szostak, Adv. Synth. Catal.,
2015, 357, 2583; (b) S. Fuse, T. Morita and H. Nakamura, Synthesis,
2017, 49, 2351; (c) T. Morita, S. Yugandar, S. Fuse and H. Nakamura,
Tetrahedron Lett., 2018, 59, 1159; (d) T. M. V. D. Pinho e Melo, Curr.
Org. Chem., 2005, 9, 925.
13 (a) J. S. Wzorek, T. F. Knopfel, I. Sapountzis and D. A. Evans, Org. Lett.,
2012, 14, 5840; (b) S. U. Dighe, S. Mukhopadhyay, S. Kolle, S. Kanojiya
and S. Batra, Angew. Chem. Int. Ed., 2015, 54, 10926; (c) W. Chen, J.
Zhang, B. Wang, Z. Zhao, X. Wang and Y. Hu, J. Org. Chem., 2015, 80,
2413; (d) S. Fukuhara, S. Yugandar, S. Fuse and H. Nakamura, ACS
Omega, 2018, 3, 16472.
14 The direct C-H coupling at C-4 of isoxazoles: (a) M.-E. Theoclitou and
L. A. Robinson, Tetrahedron Lett. 2002, 43, 3907; (b) K. Hata, H. Ito, Y.
Segawa and K. Itami, Beilstein J. Org. Chem. 2015, 11, 2737. The direct
C-H coupling at C-5 of isoxazoles: (c) M. Shigenobu, K. Takenaka and
H. Sasai, Angew. Chem. Int. Ed. 2015, 54, 9572; (d) T. Morita, S.
Fukuhara, S. Fuse and H. Nakamura, Org. Lett., 2018, 20, 433.
15 T. Morita, S. Fuse and H. Nakamura, Angew. Chem. Int. Ed., 2016, 55,
13580.
This work was partially supported by Scientific Research (B)
(No.18H02685) from the Ministry of Education, Culture, Sports,
Science and Technology, Japan. We thank Mr. Yoshihisa Sei
(Technical Department, Tokyo Institute of Technology) for technical
assistance with X-ray crystallographic analysis.
Conflicts of interest
The authors declare no conflict of interest.
Notes and references
1
Recent/selected reviews for transition metal catalyzed C-H
functionalization: (a) M. Gulias and J. L. Mascarenas, Angew. Chem.
Int. Ed., 2016, 55, 11000; (b) C. Zhu, C.-Q. Wang, C. Feng, Tetrahedron
Lett., 2018, 59, 430; (c) Y. Minami and T. Hiyama, Tetrahedron Lett.,
2018, 59, 781; (d) M.-L. Louillat and F. W. Patureau, Chem. Soc. Rev.,
2014, 43, 901; (e) T. Gensch, M. N. Hopkinson, F. Glorius and J.
Wencel-Delord, Chem. Soc. Rev., 2016, 45, 2900; (f) T. Satoh and M.
Miura, Chem. Eur. J., 2010, 16, 11212; (g) B. Chattopadhyay and V.
Gevorgyan, Angew. Chem. Int. Ed., 2012, 51, 862.
16 X. Tan, B. Liu, X. Li, B. Li, S. Xu, H. Song and B. Wang, J. Am. Chem. Soc.,
2012, 134, 16163.
17 (a) T. Noguchi, Y. Nishii and M. Miura, Chem. Lett., 2017, 46, 1512; (b)
T. Noguchi, Y. Nishii, and M. Miura, Synthesis, 2019, 51, 258; (c) Z. Qi,
G.-D. Tang, C.-L. Pan and X. Li, Org. Biomol. Chem., 2015, 13, 10977;
(d) F. Yang, J. Yu, Y. Liu and J. Zhu, Org. Lett., 2017, 19, 2885.
2
Reviews for Directed C-H bond activations: (a) T. Satoh and M. Miura,
Synthesis, 2010, 3395. (b) T. W. Lyons and M. S. Sanford, Chem. Rev.,
2010, 110, 1147; (c) D. A. Colby, A. S. Tsai, R. G. Bergman and J. Ellman,
Acc. Chem. Res., 2012, 45, 814; (d) Q.-Z. Zheng and N. Jiao,
Tetrahedron Lett., 2014, 55, 1121; (e) M. P. Drapeau and L. J. Goossen,
Chem. Eur. J., 2016, 22, 18654; (f) Y. Yang, K. Li, Y. Cheng, D. Wan, M.
Li and J. You, Chem. Commun., 2016, 52, 2872; (g) G. Song and X. Li,
Acc. Chem. Res., 2015, 48, 1007; (h) L. Ackermann, Acc. Chem. Res.
2014, 47, 281; (i) G. Shi and Y. Zhang, Adv. Synth. Catal., 2014, 356,
1419.
3
(a) F. Zhang and D. R. Spring, Chem. Soc. Rev., 2014, 43, 6906. (b) G.
Rousseau and B. Breit, Angew. Chem. Int. Ed., 2011, 50, 2450; (c) G.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins