Page 5 of 5
Journal of the American Chemical Society
(26) For
a
recent review on catalytic enantioselective
Kuś, T.; Landau, A.; Liu, J.; Proynov, E. I.; Rhee, Y. M.; Richard, R. M.;
Rohrdanz, M. A.; Steele, R. P.; Sundstrom, E. J.; Woodcock, H. L.;
Zimmerman, P. M.; Zuev, D.; Albrecht, B.; Alguire, E.; Austin, B.;
Beran, G. J. O.; Bernard, Y. A.; Berquist, E.; Brandhorst, K.; Bravaya, K.
B.; Brown, S. T.; Casanova, D.; Chang, C.-M.; Chen, Y.; Chien, S. H.;
Closser, K. D.; Crittenden, D. L.; Diedenhofen, M.; DiStasio, R. A.; Do,
H.; Dutoi, A. D.; Edgar, R. G.; Fatehi, S.; Fusti-Molnar, L.; Ghysels, A.;
Golubeva-Zadorozhnaya, A.; Gomes, J.; Hanson-Heine, M. W. D.;
Harbach, P. H. P.; Hauser, A. W.; Hohenstein, E. G.; Holden, Z. C.;
Jagau, T.-C.; Ji, H.; Kaduk, B.; Khistyaev, K.; Kim, J.; Kim, J.; King, R.
A.; Klunzinger, P.; Kosenkov, D.; Kowalczyk, T.; Krauter, C. M.; Lao,
K. U.; Laurent, A. D.; Lawler, K. V.; Levchenko, S. V.; Lin, C. Y.; Liu, F.;
Livshits, E.; Lochan, R. C.; Luenser, A.; Manohar, P.; Manzer, S. F.;
Mao, S.-P.; Mardirossian, N.; Marenich, A. V.; Maurer, S. A.; Mayhall,
N. J.; Neuscamman, E.; Oana, C. M.; Olivares-Amaya, R.; O’Neill, D.
P.; Parkhill, J. A.; Perrine, T. M.; Peverati, R.; Prociuk, A.; Rehn, D. R.;
Rosta, E.; Russ, N. J.; Sharada, S. M.; Sharma, S.; Small, D. W.; Sodt,
A.; Stein, T.; Stück, D.; Su, Y.-C.; Thom, A. J. W.; Tsuchimochi, T.;
Vanovschi, V.; Vogt, L.; Vydrov, O.; Wang, T.; Watson, M. A.; Wenzel,
J.; White, A.; Williams, C. F.; Yang, J.; Yeganeh, S.; Yost, S. R.; You, Z.-
Q.; Zhang, I. Y.; Zhang, X.; Zhao, Y.; Brooks, B. R.; Chan, G. K. L.;
Chipman, D. M.; Cramer, C. J.; Goddard, W. A.; Gordon, M. S.; Hehre,
W. J.; Klamt, A.; Schaefer, H. F.; Schmidt, M. W.; Sherrill, C. D.;
Truhlar, D. G.; Warshel, A.; Xu, X.; Aspuru-Guzik, A.; Baer, R.; Bell, A.
T.; Besley, N. A.; Chai, J.-D.; Dreuw, A.; Dunietz, B. D.; Furlani, T. R.;
Gwaltney, S. R.; Hsu, C.-P.; Jung, Y.; Kong, J.; Lambrecht, D. S.; Liang,
W.; Ochsenfeld, C.; Rassolov, V. A.; Slipchenko, L. V.; Subotnik, J. E.;
Van Voorhis, T.; Herbert, J. M.; Krylov, A. I.; Gill, P. M. W.; Head-
Gordon, M. Advances in molecular quantum chemistry contained in
the Q-Chem 4 program package. Mol. Phys. 2015, 113, 184-215.
(37) Paddon-Row, M. N.; Anderson, C. D.; Houk, K. N.
Computational Evaluation of Enantioselective Diels−Alder Reactions
Mediated by Corey’s Cationic Oxazaborolidine Catalysts. J. Org.
Chem. 2009, 74, 861-868.
rearrangement reactions, see: Wu, H.; Wang, Q.; Zhu, J. Recent
Advances in Catalytic Enantioselective Rearrangement. Eur. J. Org.
Chem. 2019, 1964-1980.
(27) For previous work on an enantioselective oxadi--methane
rearrangement (up to 10% ee), see: Demuth, M.; Raghaven, P. R.;
Carter, C.; Nakano, K.; Schaffner, K. Photochemical High-yield
Preparation of Tricyclo[3.3.0.02,8]octan-3-ones. Potential Synthons for
Polycyclopentanoid Terpenes and Prostacyclin Analogs. Helv. Chim.
Acta. 1980, 63, 2434-2439.
1
2
3
4
5
6
7
8
(28) Corey, E. J.; Shibata, T.; Lee, T. W. Asymmetric Diels−Alder
Reactions Catalyzed by
9
a
Triflic Acid Activated Chiral
Oxazaborolidine. J. Am. Chem. Soc. 2002, 124, 3808-3809.
(29) Merten, C.; Golub, T. P.; Kreienborg, N. M. Absolute
Configurations of Synthetic Molecular Scaffolds from Vibrational CD
Spectroscopy. J. Org. Chem. 2019, 84, 8797-8814.
(30) Yang, D.; Zhang, C. Ruthenium-Catalyzed Oxidative Cleavage
of Olefins to Aldehydes. J. Org. Chem. 2001, 66, 4814-4818.
(31) Edwards, J. T.; Merchant, R. R.; McClymont, K. S.; Knouse, K.
W.; Qin, T.; Malins, L. R.; Vokits, B.; Shaw, S. A.; Bao, D.-H.; Wei, F.-
L.; Zhou, T.; Eastgate, M. D.; Baran, P. S. Decarboxylative alkenylation.
Nature 2017, 545, 213-218.
(32) Begley, M. J.; Crombie, L.; Simmonds, D. J.; Whiting, D. A.
Absolute Configuration of the Pyrethrins. Configuration and
Structure of (+)-Allethronyl (+)-trans-Chrysanthemate 6-Bromo-2,4-
dinitrophenylhydrazone by X-ray Methods. J. Chem. Soc., Chem.
Commun. 1972, 1276-1277.
(33) Hammond, G. S.; Saltiel, J.; Lamola, A. A.; Turro, N. J.;
Bradshaw, J. S.; Cowan, D. O.; Counsell, R. C.; Vogt, V.; Dalton, C.
Mechanisms of Photochemical Reactions in Solution. XXII.
Photochemical cis-trans Isomerization. J. Am. Chem. Soc. 1964, 86,
3197-3217.
(34) Shao, Y.; Head-Gordon, M.; Krylov, A. I. The spin–flip
approach within time-dependent density functional theory: Theory
and applications to diradicals. J. Chem. Phys. 2003, 118, 4807-4818.
(35) Dreuw, A.; Head-Gordon, M. Single-Reference ab Initio
Methods for the Calculation of Excited States of Large Molecules.
Chem. Rev. 2005, 105, 4009-4037.
(36) Shao, Y.; Gan, Z.; Epifanovsky, E.; Gilbert, A. T. B.; Wormit, M.;
Kussmann, J.; Lange, A. W.; Behn, A.; Deng, J.; Feng, X.; Ghosh, D.;
Goldey, M.; Horn, P. R.; Jacobson, L. D.; Kaliman, I.; Khaliullin, R. Z.;
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(38) Sakata, K.; Fujimoto, H. Quantum Chemical Study of Diels–
Alder Reactions Catalyzed by Lewis Acid Activated Oxazaborolidines.
J. Org. Chem. 2013, 78, 3095-3103.
(39) Poplata, S.; Bauer, A.; Storch, G.; Bach, T. Intramolecular [2+2]
Photocycloaddition of Cyclic Enones: Selectivity Control by Lewis
Acids and Mechanistic Implications. Chem. Eur. J. 2019, 25, 8135-8148.
Table of Contents artwork
h ( = 437 nm)
cat.
O
10 mol%
(CH2Cl2)
O
R
H
R
N
O
78 °C, t = 5 h
R
B
Br3Al
R1
R1
R
R2
R2
15 examples
54-80%, 92-96% ee
cat.
Singlet reaction pathway passing a conical intersection
High functional group tolerance (COOMe, CF3, NPhth, OMe, Cl, Ph)
Application to the synthesis of trans-chrysanthemic acid
ACS Paragon Plus Environment