2656
V. B. Sharma et al. / Tetrahedron Letters 44 (2003) 2655–2656
Table 1. Methyltrioxorhenium catalyzed aerobic oxidation
(c) Dobler, C.; Mehltretter, G. M.; Sundermeier, U.; Beller,
M. J. Am. Chem. Soc. 2001, 122, 10289; (d) David, R. J.;
Pugsley, S. J.; Matthew, S. J. Am. Chem. Soc. 2001, 123,
7475; (e) Davis, S.; Drago, R. S. J. Chem. Soc., Chem.
Commun. 1990, 250.
of 2-naphtholsa
Entry
Naphthol 1
Reaction time (h)
Yield (%)b
1a
1b
R1=R2=R3=H
R1=Br;
12
10
92
95
4. James, Z. Z.; Espenson, J. H. J. Mol. Catal. A: Chem. 1995,
103, 87.
R2=R3=H
R1=R3=H;
R2=OCH3
5. For reviews, see: (a) Rosini, G.; Franzini, L.; Raffaelli, A.;
Salvadori, P. Synthesis 1992, 503; (b) Kagan, H. B.; Riant,
O. Chem. Rev. 1992, 92, 1007; (c) Hattori, K.; Yamamoto,
H. J. Org. Chem. 1992, 57, 3264; (d) Hattori, K.; Miyata,
M.; Yamamoto, H. J. Am. Chem. Soc. 1993, 115, 1151; (e)
Zhang, X.; Taketomi, T.; Yoshizumi, T.; Kumobayashi,
H.; Akutagawa, S.; Mashima, K.; Takaya, H. J. Am.
Chem. Soc. 1993, 115, 3318; (f) Kaupp, G. Angew. Chem.,
Int. Ed. Engl. 1994, 33, 728; (g) Mikami, K.; Motoyama,
Y.; Terada, M. J. Am. Chem. Soc. 1994, 116, 2812.
6. Toda, F.; Tanaka, K.; Iwata, S. J. Org. Chem. 1989, 54,
3007.
1c
1d
1e
12
20
24
90
40
20
R1=R2=H;
R3=COOCH3
R1=R2=H;
R3=COOH
a Reaction conditions: 2-naphthol (1 mmol), methyltrioxorhenium (5
mol%) in chlorobenzene (5 ml) at reflux temperature under an
oxygen atmosphere.
b Isolated yields.
7. Feringa, B.; Wynberg, H. J. Org. Chem. 1981, 46, 2547.
8. Yamamoto, K.; Fukushima, H.; Okamoto, Y.; Hatada, K.;
Nakazaki, M. J. Chem. Soc., Chem. Commun. 1984, 1111.
9. Feringa, B.; Wynberg, H. Tetrahedron Lett. 1977, 18, 4447.
10. Nakajima, M.; Miyoshi, I.; Kanayama, K.; Hashimoto, S.
I. J. Org. Chem. 1999, 64, 2264.
11. (a) Sakamoto, T.; Yonehara, H.; Pac, C. J. Org. Chem.
1997, 62, 3194; (b) Hans-Juergen, D.; Klaus, M.; Gotthard,
W. Arch. Pharm. 1988, 321, 153.
12. Hwang, D. R.; Chen, C. P.; Uang, B. J. Chem. Commun.
Scheme 2.
1999, 1207.
13. Elvira, A.; Avelino, C.; Hermenegildo, G.; Jaime, P. Eur.
J. Org. Chem. 1999, 8, 1915.
14. Prasad, M. R.; Kamalakar, G.; Kulkarni, S. J.; Raghavan,
To evaluate the effect of solvents, the aerobic oxidation
of 2-naphthol was carried out under similar reaction
conditions by using different solvents: chlorobenzene,
acetonitrile, 1,2-dichloroethane and toluene. Chloroben-
zene was found to be most suitable solvent. The oxidative
coupling of 2-naphthols was found to be very slow at
room temperature and could be carried out more
efficiently in refluxing chlorobenzene.
K. V. J. Mol. Catal. A: Chem. 2002, 180, 109.
15. (a) Sharma, V. B.; Jain, S. L.; Sain, B. Tetrahedron Lett.
2003, 44, 383; (b) Jain, S. L.; Sain, B. Chem. Commun. 2002,
1040; (c) Jain, S. L.; Sain, B. J. Mol. Catal. 2001, 176, 101;
(d) Rao, T. V.; Sain, B.; Kumar, K.; Murthy, P. S. N.;
Prasada Rao, T. S. R.; Joshi, G. C. Synth. Commun. 1998,
28, 319; (e) Sain, B.; Murthy, P. S. N.; Rao, T. V.; Prasada
Rao, T. S. R.; Joshi, G. C. Tetrahedron Lett. 1994, 35, 5083;
(f) Rao, T. V.; Sain, B.; Murthy, P. S.; Prasada Rao, T.
S. R.; Jain, A. K.; Joshi, G. C. J. Chem. Res. (S) 1997, 300;
(g) Rao, T. V.; Sain, B.; Murthy, P. S. N.; Joshi, G. C.;
Prasada Rao, T. S. R. Stud. Surf. Sci. Catal. 1998, 113, 921.
16. Typical experimental procedure: To a stirred solution of
2-naphthol (144 mg, 1 mmol) in chlorobenzene (5 ml) was
added methyltrioxorhenium (12 mg, 5 mol%) and the
reaction mixture was refluxed for 12 h under an oxygen
atmosphere. The reaction progress was monitored by TLC
(SiO2). After completion of the reaction the solvent was
evaporated under reduced pressure and the residue was
dissolved in dichloromethane. The dichloromethane layer
was washed twice with water and dried over anhydrous
sodium sulphate followed by evaporation of the solvent.
The residue thus obtained was purified by column chro-
matography on silica gel using ethyl acetate/hexane (1:4)
as eluent. Evaporation of the solvent yielded 1,1%-bi-2-
naphthol (265 mg, 92%). Similarly other substituted 2-
naphthols were oxidized using this procedure and their
reaction times and yields are given in the Table. The
products were identified by comparing their physical and
spectral data with those of authentic compounds reported
in literature.
The mechanism of this reaction is not clear at this stage
and further studies in this direction are being carried out.
In summary, we have developed a catalytic aerobic
oxidation for the selective oxidative coupling of 2-naph-
thols to their corresponding 1,1%-bi-2-naphthols. The
present method describes the second example of a
methyltrioxorhenium catalyzed oxidation reaction using
molecular oxygen as the oxidant.
References
1. Herrmann, W. A.; Kuhn, F. E. Acc. Chem. Res. 1997, 30,
169.
2. For reviews, see: (a) Romao, C. C.; Kuhn, F. E.; Her-
rmann, W. A. Chem. Rev. 1997, 97, 3197; (b) Espenson,
H. Chem. Commun. 1999, 479; (c) Owens, S.; Arias, J.;
Abu-Omar, M. M. Catal. Today 2000, 55, 317.
3. (a) Nishiyama, Y.; Nakagawa, Y.; Mizuno, N. Angew.
Chem., Int. Ed. 2001, 40, 3639; (b) Thomas, J. M.; Raja,
R.; Sankar, K.; Bell, R. G. Acc. Chem. Res. 2001, 34, 191;