Ji et al.
JOCArticle
SCHEME 1
with alkynes has proven to be an effective method for the
synthesis of heterocyclic compounds.7-25 We7 and others
have reported that the electrophilic cyclization8 of alkynes
can be a very powerful tool for the preparation of a wide
variety of important heterocyclic compounds due to the
mild, efficient, and clean reactions. Many important hetero-
cycles, such as benzo[b]thiophenes,9 benzofurans,10 2,3-di-
hydropyrroles and pyrroles,11 furans,7b,12 dihydropyrans,7f,13
indoles,14 isochromenes,15 isocoumarins and R-pyrones,16 iso-
quinolines and quinolines,17 isoxazoles,18 and oxazoles,19 fura-
nones,20 furopyridines,21 spiro[4,5]trienones,22 coumestans and
coumestrols,23 naphthols,24 and naphthalenes,25 have been re-
ported based on this strategy. Thus, electrophilic cyclization
reactions continue to be an area of active research in the field of
synthetic chemistry. However, the electrophilic cyclization of
heteroatomic nucleophiles with allenes has often been consid-
ered to be synthetically less attractive due to the lack of efficient
control of the regio- and stereoselectivity. Not long ago, Ma
and co-workers reported an interesting cyclization of substi-
tuted allenoic acids in the presence of electrophiles to afford
halogenated butenolides (Scheme 1).26 So, the chemistry of
allenes as organic synthons still needs to be explored more.
We found that 1,4-butyne-diol, 4-aminobut-2-yn-1-ol,
and pent-2-yne-1,5-diol derivatives could isomerize to give
the halogenated allene intermediates. These reactions are
generally believed to proceed by a stepwise mechanism
involving the allene cation intermediate formation in the
presence of electrophiles, which can be readily trapped by
nucleophiles (e.g., Cl, Br, I), then electrophilic activation of
FIGURE 1. Somepharmaceuticals and biologically activemolecules.
a mild, metal-free, environmently benign and atom econom-
ic protocol for the straightforward annulation of five- and
six-membered heterocyclic rings is still of high demand.
In recent years, the electrophilic cyclization of hetero-
atomic nucleophiles, such as oxygen, nitrogen, and sulfur,
(7) (a) Bi, H.-P.; Guo, L.-N.; Duan, X.-H.; Gou, F.-R.; Huang, S.-H.;
Liu, X.-Y.; Liang, Y.-M. Org. Lett. 2007, 9, 397. (b) Xie, Y.-X.; Liu, X.-Y.;
Wu, L.-Y.; Han, Y.; Zhao, L.-B.; Fan, M.-J.; Liang, Y.-M. Eur. J. Org.
Chem. 2008, 1013. (c) Wen, S.-G.; Liu, W.-M.; Liang, Y.-M. J. Org. Chem.
2008, 73, 4342. (d) Xie, Y.-X.; Yan, Z.-Y.; Qian, B.; Deng, W.-Y.; Wu, L.-Y.;
Liu, X.-Y.; Liang, Y.-M. Chem. Commun. 2009, 5451. (e) Xie, Y.-X.; Yan,
Z.-Y.; Wang, D.-Z.; Wu, L.-Y.; Qian, B.; Liu, X.-Y.; Liang, Y.-M. Eur. J.
Org. Chem. 2009, 2283. (f ) Ji, K.-G.; Zhu, H.-T.; Yang, F.; Shu, X.-Z.; Zhao,
S.-C.; Shaukat, A.; Liu, X.-Y.; Liang, Y.-M. Chem.;Eur. J. 2010, 16, 1615.
(8) For early studies on electrophilic cyclization reaction, see: (a) Ren,
X.-F.; Turos, E. Tetrahedron Lett. 1993, 34, 1575. (b) Kitamura, T.; Takachi,
T.; Kawasato, H.; Taniguchi, H. J. Chem. Soc., Perkin Trans. 1 1992, 1969.
(c) Kitamura, T.; Kobayashi, S.; Taniguchi, H.; Hori, K. J. Am. Chem. Soc.
1991, 113, 6240. (d) Ten Hoedt, R. W. M.; Van Koten, G.; Noltes, J. G.
Synth. Commun. 1977, 7, 61. (e) Sonoda, T.; Kawakami, M.; Ikeda, T.;
Kobayashi, S.; Taniguchi, H. J. Chem. Soc., Chem. Commun. 1976, 612.
(9) (a) Larock, R. C.; Yue, D. Tetrahedron Lett. 2001, 42, 6011. (b)
Yue, D.; Larock, R. C. J. Org. Chem. 2002, 67, 1905. (c) Flynn, B. L.;
Verdier-Pinard, P.; Hamel, E. Org. Lett. 2001, 3, 651. (d) Hessian, K. O.;
Flynn, B. L. Org. Lett. 2003, 5, 4377.
(10) (a) Arcadi, A.; Cacchi, S.; Fabrizi, G.; Marinelli, F.; Moro, L. Synlett
1999, 1432. (b) Mehta, S.; Waldo, J. P.; Larock, R. C. J. Org. Chem. 2009, 74,
1141.
(11) (a) Knight, D. W.; Redfern, A. L.; Gilmore, J. Chem. Commun. 1998,
2207. (b) Knight, D. W.; Redfern, A. L.; Gilmore, J. J. Chem. Soc., Perkin
Trans. 1 2001, 2874. (c) Knight, D. W.; Redfern, A. L.; Gilmore, J. J. Chem.
Soc., Perkin Trans. 1 2002, 622.
(12) (a) Bew, S. P.; Knight, D. W. Chem. Commun. 1996, 1007. (b)
Djuardi, E.; McNelis, E. Tetrahedron Lett. 1999, 40, 7193. (c) Sniady, A.;
Wheeler, K. A.; Dembinski, R. Org. Lett. 2005, 7, 1769. (d) Yao, T.; Zhang,
X.; Larock, R. C. J. Org. Chem. 2005, 70, 7679. (e) Liu, Y.; Zhou, S. Org.
Lett. 2005, 7, 4609. (f ) Bew, S. P.; El-Taeb, G. M. M.; Jones, S.; Knight,
D. W.; Tan, W.-F. Eur. J. Org. Chem. 2007, 5759. (g) Arimitsu, S.; Jacobsen,
J. M.; Hammond, G. B. J. Org. Chem. 2008, 73, 2886. (h) Huang, X.; Fu, W.;
Miao, M. Tetrahedron Lett. 2008, 49, 2359.
(13) (a) Mohapatra, D. K.; Das, P. P.; Pattanayak, M. R.; Yadav, J. S.
Chem.;Eur. J. 2010, 16, 2072. (b) Mancuso, R.; Mehta, S.; Gabriele, B.;
Salerno, G.; Jenks, W. S.; Larock, R. C. J. Org. Chem. 2010, 75, 897.
(14) (a) Barluenga, J.; Trincado, M.; Rublio, E.; Gonzalez, J. M. Angew.
Chem., Int. Ed. 2003, 42, 2406. (b) Amjad, M.; Knight, D. W. Tetrahedron
Lett. 2004, 45, 539. (c) Yue, D.; Larock, R. C. Org. Lett. 2004, 6, 1037.
(15) (a) Barluenga, J.; Vazque-Villa, H.; Ballesteros, A.; Gonzalez, J. M.
J. Am. Chem. Soc. 2003, 125, 9028. (b) Yue, D.; Della Ca, N.; Larock, R. C.
Org. Lett. 2004, 6, 1581.
(16) (a) Yao, T.; Larock, R. C. Tetrahedron Lett. 2002, 43, 7401. (b) Yao,
T.; Larock, R. C. J. Org. Chem. 2003, 68, 5936. (c) Oliver, M. A.; Gandour,
R. D. J. Org. Chem. 1984, 49, 558. (d) Biagetti, M.; Bellina, F.; Carpita, A.;
Stabile, P.; Rossi, R. Tetrahedron 2002, 58, 5023. (e) Rossi, R.; Carpita, A.;
Bellina, F.; Stabile, P.; Mannina, L. Tetrahedron 2003, 59, 2067.
(17) (a) Huang, Q.; Hunter, J. A.; Larock, R. C. Org. Lett. 2001, 3, 2973.
(b) Huang, Q.; Hunter, J. A.; Larock, R. C. J. Org. Chem. 2002, 67, 3437. (c)
Barluenga, J.; Gonzalez, J. M.; Campos, P. J.; Asensio, G. Angew. Chem.,
Int. Ed. Engl. 1988, 27, 1546. (d) Huo, Z.; Gridnev, I. D.; Yamamoto, Y.
J. Org. Chem. 2010, 75, 1266. (e) Fischer, D.; Tomeba, H.; Pahadi, N. K.;
Patil, N. T.; Huo, Z.; Yamamoto, Y. J. Am. Chem. Soc. 2008, 130, 15720. (f )
Ding, Q.; Wu, J. Adv. Synth. Catal. 2008, 350, 1850. (g) Ding, Q.; Wang, Z.;
Wu, J. J. Org. Chem. 2009, 74, 921.
(18) Waldo, J. P.; Larock, R. C. Org. Lett. 2005, 7, 5203.
(19) Hashmi, A. S. K.; Weyrauch, J. P.; Frey, W.; Bats, W. J. Org. Lett.
2004, 6, 4391.
(20) (a) Just, Z. W.; Larock, R. C. J. Org. Chem. 2008, 73, 2662. (b) Crone,
B.; Kirsch, S. F. J. Org. Chem. 2007, 72, 5435.
(21) Arcadi, A.; Cacchi, S.; Di Giuseppe, S.; Fabrizi, G.; Marinelli, F.
Org. Lett. 2002, 4, 2409.
(22) (a) Zhang, X.; Larock, R. C. J. Am. Chem. Soc. 2005, 127, 12230. (b)
Tang, B.-X.; Tang, D.-J.; Tang, S.; Yu, Q.-F.; Zhang, Y.-H.; Liang, Y.;
Zhong, P.; Li, J.-H. Org. Lett. 2008, 10, 1063.
(23) Yao, T.; Yue, D.; Larock, R. C. J. Org. Chem. 2005, 70, 9985.
(24) Zhang, X.; Sarkar, S.; Larock, R. C. J. Org. Chem. 2006, 71, 236.
(25) Barluenga, J.; Vazquez-Villa, H.; Ballesteros, A.; Gonzalez, J. M.
Org. Lett. 2003, 5, 4121.
(26) (a) Ma, S. Acc. Chem. Res. 2009, 42, 1679. (b) Jiang, X.; Fu, C.; Ma,
S. Chem.;Eur. J. 2008, 14, 9656. For a correction, see: Chem.;Eur. J.
2009, 15, 1295. (c) Fu, C.; Ma, S. Eur. J. Org. Chem. 2005, 3942. (d) Chen, G.;
Fu, C.; Ma, S. Tetrahedron 2006, 62, 4444.
J. Org. Chem. Vol. 75, No. 16, 2010 5671