1546
P. Angibaud et al. / Bioorg. Med. Chem. Lett. 13 (2003) 1543–1547
Table 1. FPT inhibition results for compounds 14–32
and therefore they were not considered as valuable can-
didates for further studies.
Compd
X
n
R
FPT (enz)
IC50, nMa
FPT (cells)
IC50, nMb
GGPT
IC50, mMc
Modification of the R115777 backbone has led us to
derivatives showing similar but not superior in vitro and
in vivo FPT inhibiting potency. In vitro selectivity of
R115777 for FPTase versus GGPTase I has also been
conserved within the tested compounds. Further chemi-
cal efforts in these series are being focused on improving
activity, solubility and pharmacokinetic parameters.
1
2
—
—
CH2
CH2 1 NH2
CH2 OH
CH2 2 NH2
O
O
O
— NH2
— NH2
0.8
3.5
1
0.5
4
1.7
6
6
1.6
1.7
23
9
4
54
9
45
10
nt
nt
1.5
nt
14
18
15
19
29
30
32
18ad
18bd
1
OH
2
nt
1
2
OH
OH
51% inh@10 mM
22% inh@10 mM
38% inh@10 mM
nt
62
>500
nt
2 NH2
CH2 1 NH2 31% inh@0.1 mM
CH2 1 NH2 0.5
References and Notes
3.3
0.6
nt, not tested.
1. Rodenhuis, S. Semin. Cancer Biol. 1992, 3, 241.
2. Bos, J. L. Cancer Res. 1989, 49, 4682.
3. Barbacid, M. Ann. Rev. Biochem. 1987, 56, 779.
4. Kato, K.; Cox, A. D.; Hisaka, M. M.; Graham, S. M.;
Buss, J. E.; Der, C. J. Proc. Natl. Acad. Sci. U.S.A. 1992, 89,
6403.
5. Der, C. J.; Cox, A. D. Cancer Cells 1991, 3, 331.
6. Seabra, M. C.; Reiss, Y.; Casey, P. L.; Brown, M. S.;
Goldstein, J. L. Cell 1991, 65, 429.
aThe concentration required to reduce the FPTase-catalyzed incor-
poration of [3H]-farnesylpyrophosphate into a biotinylated laminB
peptide by 50%.
bSee ref 26.
cThe concentration required to reduce the Geranylgeranylprotein
transferase-I (GGPTase-I) catalyzed incorporation of [3H]-geranylger-
anylpyrophosphate into a biotinYRASNRSCAIL substrate by 50%.
dee>98%.27
7. Rowinsky, E. K.; Windle, J. J.; Von Hoff, D. D. J. Clin.
Oncol. 1999, 17, 3631.
8. Rowinsky, E. K.; Patnaik, A. Emerg. Drugs 2000, 5, 161.
9. End, D. W. Invest. New drugs 1999, 17, 241.
10. Johnston, S. Lancet Oncol. 2001, 2, 18.
11. Lebowitz, P. F.; Casey, P. J.; Prendergast, G. C.; Thissen,
J. A. J. Biol. Chem. 1997, 272, 15591.
12. Ashar, H. R.; James, L.; Gray, K.; Carr, D.; Black, S.;
Armstrong, L.; Bishop, W. R.; Kirschmeier, P. J. Biol. Chem.
2000, 275, 30451.
13. Adnane, J.; Bizouarn, F. A.; Chen, Z.; Ohkanda, J.;
Hamilton, A. D.; Munoz-Antonia, T.; Sebti, S. M. Oncogene
2000, 19, 5525.
14. Feldkamp, M. M.; Lau, N.; Rak, J.; Kerbel, R. S.; Guha,
A. Int. J. Cancer 1999, 81, 118.
Table 2. Comparison of in vivo results for compounds R115777 and
18b
Compd
Metabolizationa
(%)
In vivob
% inhib.
Protein bindingc
% free
R115777
18b
66
74
37
28
0.66
0.25
aPercentage of parent drug remaining after 120 min incubation with
human liver microsomes.28
bIn vivo screening at 25 mg/kg in mice injected with T24 NIH 3T3
cells, percentage of tumor weight inhibition.29
cPercentage of free circulating fraction of drug in plasma.
15. End, D. W.; Smets, G.; Todd, A. V.; Applegate, T. L.;
Fuery, C. J.; Angibaud, P.; Venet, M.; Sanz, G.; Poignet, H.;
Skrzat, S.; Devine, A.; Wouters, W.; Bowden, C. Cancer Res.
2001, 61, 131.
Table 3. FPT inhibition results for compounds 41, 50a, 50b and 56
Compd
FPT (enz)
IC50, nMa
FPT (cells)
IC50, nMb
GGPT
IC50, mMc
16. Norman, P. Curr. Opin. Investing. Drugs 2002, 3, 313.
17. End, D. W. Unpublished results.
18. Venet, M. G.; Angibaud, P. R.; Ligny, Y. A. E.; Poncelet,
V. S.; Sanz, G. C. W.O. Patent 98/40383, 1998.
19. Venet, M. G.; Angibaud, P. R.; Muller, P.; Sanz, G. C.
W.O. patent 97/21701, 1997.
41
6.5
48% inh@0.1 mM
29
64
nt
nt
nt
nt
nt
nt
50a
50b
56
22% inh@0.1 mM
32% inh@10 mM
a,b,cSee corresponding footnotes in Table 1. nt, not tested.
20. Filliers, W. F. M.; Broeckx, R. L. M.; Leurs, S. M. H.
W.O. patent 02/72574, 2002.
21. Venet, M. Abstract of papers, 222nd National Meeting of
the American Chemical Society, Chicago, IL, 26–30 August
2001; American Chemical Society: Washington, DC, 2001;
69BUZP.
basic features previously identified as crucial, namely,
the C5-linked imidazole, the two chloro-phenyl moieties
and the N-methyl–amide bond.30
22. 3-(3-Chlorophenyl)-5-[2-(4-chlorophenyl)-1,3-dioxolan-2-yl]-
2,1-benzisoxazole 33 was prepared from 4-chloro-40-nitro-
benzophenone exactly as described in Scheme 2 steps c and d
(86% yield). Angibaud, P. R.; Venet, M. G.; Freyne, E. J. E.
W.O. Patent 98/49157, 1998.
23. James, G. L.; Goldstein, J. L.; Brown, M. S.; Rawson,
T. E.; Somers, T. C.; McDowell, R. S.; Crowley, C. W.; Lucas,
B. K.; Levinson, A. D.; Marsters, J. C., Jr. Science 1993, 260,
1937.
Quinazoline analogue 41 displayed a reduced activity in
vitro (Table 3) but owing to its lower calculated logP
value (3.4 compared to 4.2 in 1), we considered that the
introduction of another nitrogen atom in R115777
backbone could result in improved solubility. However,
no clear in vivo activity could be detected at a dose of
25 mg/kg.
24. Angibaud, P. R.; Venet, M. G.; Poncelet, V. S. W.O
Patent 02/42296, 2002.
25. Angibaud, P. R.; Venet, M. G.; Bourdrez, X. M. W.O.
Patent 00/39082, 2000.
26. Cellular assays for H-ras transforming function: T24
Quinoline ring enlargement into benzo-azepinone close
analogues of R115777 was our next attempt of modifi-
cation. However the three compounds synthesized
showed inferior in vitro enzymatic profile than R115777