3114
T. Wada et al. / Bioorg. Med. Chem. Lett. 16 (2006) 3111–3114
2. (a) Zhang, J.; Terhorst, T.; Matteucci, M. D. Tetrahedron
RO
Lett. 1997, 38, 4957; (b) Higson, A. P.; Sierzchala, A.;
Brummel, H.; Zhao, Z.; Caruthers, M. H. Tetrahedron
Lett. 1998, 39, 3899; (c) Sergueev, D. S.; Shaw, B. R.
J. Am. Chem. Soc. 1998, 120, 9417; (d) Brummel, H. A.;
Caruthers, M. H. Tetrahedron Lett. 2002, 43, 749.
3. Sergueeva, Z. A.; Sergueev, D. S.; Ribeiro, A. A.; Summers,
J. S.; Shaw, B. R. Helv. Chim. Acta 2000, 83, 1377.
4. (a) Rait, V. K.; Shaw, B. R. Antisense Nucleic Acid Drug
Dev. 1999, 9, 53; (b) Wang, X.; Dobrikov, M.; Sergueev,
D.; Shaw, B. R. Nucleosides Nucleotides 2003, 22, 1151.
5. Hawthorne, M. F. Angew. Chem. Int. Ed. Engl. 1993, 32,
1044.
OR
P
HN
NH2
+
P
H2N
O
O
N+
N
+
N
Ph
H
intramolecular
re-cyclization
N
O
Ph
N
O
protonated
trans-8a
14
Not detectable by 31P NMR
Figure 2. Plausible mechanism of the intermolecular nucleophilic
addition between 14 and trans-8a, and the intramolecular re-
cyclization.
15 gave the N-phosphitylated nucleosides.14 To the best
of our knowledge, this is the first example of an O-selec-
tive phosphitylation the chemoselectivity of which is
independent of activators. This chemoselectivity peculiar
to the oxazaphospholidine derivatives can be explained
by the intramolecular re-cyclization of the oxazaphosp-
holidine ring, which would be much faster than the inter-
molecular nucleobase phosphitylations (Fig. 2). This new
O-selective phosphitylation may lead to a new synthetic
method for nucleic acid analogs without nucleobase
amino protection.
6. Sergueeva, Z. A.; Sergueev, D. S.; Shaw, B. R. Tetrahe-
dron Lett. 1999, 40, 2041.
7. Jin, Y.; Just, G. Tetrahedron Lett. 1998, 39, 6429.
8. Jin, Y.; Just, G. Tetrahedron Lett. 1998, 39, 6433.
9. (a) Li, H.; Porter, K.; Huang, F.; Shaw, B. R. Nucleic
Acids Res. 1995, 23, 4495; (b) Sergueev, D.; Hasan, A.;
Ramaswamy, M.; Shaw, B. R. Nucleosides Nucleotides
1997, 16, 1533; (c) He, K.; Porter, K. W.; Hasan, A.;
Briley, J. D.; Shaw, B. R. Nucleic Acids Res. 1999, 27,
1788.
10. (a) Oka, N.; Wada, T.; Saigo, K. J. Am. Chem. Soc. 2002,
124, 4962; (b) Oka, N.; Wada, T.; Saigo, K. J. Am. Chem.
Soc. 2003, 125, 8307.
11. Gasparutto, D.; Livache, T.; Bazin, H.; Duplaa, A.-M.;
Guy, A.; Khorlin, A.; Molko, D.; Roget, A.; Teoule, R.
Nucleic Acids Res. 1992, 20, 5159.
12. Li, H.; Huang, F.; Shaw, B. R. Bioorg. Med. Chem. 1997,
5, 787.
13. Wada, T.; Shimizu, M.; Oka, N.; Saigo, K. Tetrahedron
Lett. 2002, 43, 4137.
14. See Supplementary data.
15. Sergueeva, Z. A.; Sergueev, D. S.; Shaw, B. R. Nucleosides
Nucleotides 2000, 19, 275.
16. Sergueeva, Z. A.; Sergueev, D. S.; Shaw, B. R. Nucleosides
Nucleotides 2001, 20, 941.
17. Sood, A.; Spielvogel, B. F.; Shaw, B. R. J. Am. Chem. Soc.
1989, 111, 9234.
18. Sergueev, D. S.; Sergueeva, Z. A.; Shaw, B. R. Nucleosides
Nucleotides 2001, 20, 789.
19. Wada, T.; Moriguchi, T.; Sekine, M. J. Am. Chem. Soc.
1994, 116, 9901.
In summary, the stereocontrolled synthesis of dithymi-
dine boranophosphates by the oxazaphospholidine
method afforded (Rp)- and (Sp)-dithymidine borano-
phosphates with excellent diastereoselectivity both in
solution- and solid-phase syntheses. On the contrary,
the application of this method to the synthesis of dinucle-
oside boranophosphate having an unprotected nucleo-
base amino group resulted in a significant loss of
diastereopurity. However, the analysis of the resultant
dinucleoside boranophosphate showed that the nucleo-
side 30-oxazaphospholidine monomers did not give any
nucleobase-phosphitylated byproducts. 31P NMR analy-
sis of the reactions demonstrated that the chemoselectivity
of the oxazaphospholidine derivatives toward hydroxy
groups over amino groups was independent of activators.
20. We have reported that the nucleoside 30-oxazaphosphol-
idine derivatives having a 3-methyl-5-phenyl-1,3,2-oxaza-
phospholidine ring, such as (Rp)-8a,b, epimerize in the
presence of acids, such as 3. However, the loss of
diastereopurity observed for CPBT is not attributable to
the epimerization of (Rp)-8b by 3, because 3 mediated the
condensations of (Rp)- and (Sp)-8a with little loss of
diastereopurity.
21. (a) Fourrey, J.-L.; Varenne, J. Tetrahedron Lett. 1985, 26,
2663; (b) Gryaznov, S. M.; Letsinger, R. L. J. Am. Chem.
Soc. 1991, 113, 5876; (c) Gryaznov, S. M.; Letsinger, R. L.
Nucleic Acids Res. 1992, 20, 1879; (d) Hayakawa, Y.;
Kataoka, M. J. Am. Chem. Soc. 1998, 120, 12395; (e)
Sekine, M.; Ohkubo, A.; Seio, K. J. Org. Chem. 2003, 68,
5478; (f) Ohkubo, A.; Seio, K.; Sekine, M. Tetrahedron
Lett. 2004, 45, 363; (g) Ohkubo, A.; Ezawa, Y.; Seio, K.;
Sekine, M. J. Am. Chem. Soc. 2004, 126, 10884; (h)
Dabkowski, W.; Ozarek, A.; Tworowska, I. New. J. Chem.
2005, 29, 1396.
Acknowledgment
This work was supported by Grants from the Ministry
of Education, Culture, Sports, Science and Technology,
Japan.
Supplementary data
Supplementary data associated with this article can be
References and notes
1. Sood, A.; Shaw, B. R.; Spielvogel, B. F. J. Am. Chem. Soc.
1990, 112, 9000.