C O M M U N I C A T I O N S
Table 2. Asymmetric Hydrogenation of â-Keto Esters 4a
have been achieved with most substrates (93-99% ee) except for
4f and 4g. Under the same reaction conditions, we examined the
enantioselectivties for hydrogenation of 4a: BINAP (80% ee),
MeO-BIPHEP (88%), BINAPO (29%), 2a (29%), 2b (94%), 2c
(99%), and 2d (97%). The enantioselectiVities achieVed with Ru-
2c as the catalyst are the highest reported for substrate 4a. For
hydrogenation of â-alkyl-substituted â-keto esters, we found that
o-BINAPO (2d) is a better ligand (entries 9-11).
In conclusion, we have developed a novel family of chiral
bisphosphinite ligands for enantioselective Ru-catalyzed hydrogena-
tion. These catalysts are especially effective for hydrogenation of
â-aryl-substituted â-(acylamino)acrylates and â-aryl-substituted
â-keto esters. The highly enantioselective hydrogenation provides
a useful way to prepare â-aryl-substituted â-amino acids and
â-hydroxyl acids. Further studies of other transition metal com-
plexes of these ligands and their applications are in progress.
entry
ligand
Ar of 4
Rof 4
ee (%) of 6b
config.c
1
2
3
4
5
6
7
8
9
2c
2c
2c
2c
2c
2c
2c
2c
2d
2d
2d
Ph
Et (4a)
Et (4b)
Et (4c)
Et (4d)
Et (4e)
Et (4f)
Et (4g)
Et (4h)
Me (4i)
Et (4j)
Et (4k)
99 (6a)
93 (6b)
98 (6c)
96 (6d)
95 (6e)
87 (7f)
90 (6g)
98 (6h)
96 (6i)
96 (6j)
98 (6k)
R
R
R
R
R
R
R
R
S
p-F-C6H4
p-Cl-C6H4
p-Br-C6H4
p-Me-C6H4
p-MeO-C6H4
o-Me-C6H4
o-MeO-C6H4
Me
10
11
Me
ClCH2
S
R
Acknowledgment. This work was supported by grants from
National Institute of health.
a The absolute configurations were determined by comparing optical
rotations with reported values. The reaction was carried out under 80 psi
of H2 in EtOH/DCM (3/1) at 50 °C for 20 h, substrate/[Ru(p-cymene)Cl2]2/
ligand ) 200/1/2.1. b The ee (%) values were determined by GC using a
chiralselect 1000 column or HPLC with Chiralpak AS column. c Determined
by the sign of rotations.
Supporting Information Available: Full experimental procedure,
GC, HPLC data, and [R]D values of ligands 2 and hydrogenation
products 5 and 6 (PDF). This material is available free of charge via
bisphosphinite ligand 2 in situ in hot DMF.10 The reaction was
carried out under 80 psi of H2 in EtOH at 50 °C for 20 h. Although
ligands BINAPO and 2a-d show similar reactivity, the enantiose-
lectivity varied dramatically. For example, substrate 3a was reduced
with 2% ee using a Ru-BINAPO complex as the catalyst (entry 1).
The enantioselectivity increased to 22% with Ru-Me-o-BINAPO
(2a) (entry 2), Surprisingly, ee values increased dramatically when
an aryl was introduced in the o-BINAPO ligand (entries 3-5). Up
to 99% ee has been achieved with the Ru-2c catalyst (entry 4).
This result is superior to ee values obtained with other phosphine
ligands (entry 6, 31% ee with BINAP; entry 7, 39% ee with MeO-
BIPHEP).
A variety of â-aryl-substituted â-(acylamino)acrylates were
employed as substrates for the Ru-catalyzed hydrogenation reaction
with 2c as the ligand (Table 1). High enantiomerical excesses have
been achieved with the exception of 3h (entry 14). There is no
major electonic effect on the substitution pattern of 3 (96-99%
ee). A possible explanation of the low ee (80%) with o-methoxy-
substituted enamide 3h is that competing coordination of the
o-methoxy group exists in the Ru system. In this catalytic system,
methyl â-aryl-substituted â-(acylamino)acrylates gave slightly better
enantioselectivities than the corresponding ethyl â-aryl-substituted
â-(acylamino)acrylates.
References
(1) Noyori, R.; Takaya, H. Acc. Chem. Res. 1990, 23, 345.
(2) Ohta, T.; Takaya, H.; Noyori, R. Inorg. Chem. 1988, 27, 566.
(3) Grubbs, R.; DeVries, R. A. Tetrahedron Lett. 1977, 1879.
(4) (a) Cox, P. J.; Wang, W.; Snieckus, V. Tetrahedron Lett. 1992, 33, 2253.
(b) Huang, W. S.; Hu, Q. S.; Pu, L. J. Org. Chem. 1999, 64, 7940.
(5) (a) Hoekstra, W. J., Ed. The Chemistry and Biology of â-Amino Acids.
Curr. Med. Chem. 1999, 6, 905. (b) EnantioselectiVe Synthesis of â-amino
Acids; Juaristi, E., Ed.; Wiley-VCH: New York, 1997. (c) Guenard, D.;
Guritte-Voegelein, R.; Potier, P. Acc. Chem. Res. 1993, 26, 160.
(6) (a) Boesch, H.; Cesco-Cancian, S.; Hecker, L. R.; Hoekstra, W. J.; Justus,
M.; Mryanoff, C. A.; Scott, L.; Shah, R. D.; Solms, G.; Sorgi, K. L.;
Stefanick, S. M.; Thurnheer, U.; Villani, F. J.; Walker, D. G. Org. Process
Res. DeV. 2001, 5, 23. (b) Tang, T.; Ellman, J. A. J. Org. Chem. 1999,
64, 12. (c) Hoekstra, W. J.; Maryanoff, B. E.; Damiano, B. P.; Andrade-
Gordon, P.; Cohen, J. H.; Costanzo, M. J.; Haertlein, B. J.; Hecker, L.
R.; Hulshizer, B. L.; Kauffman, J. A.; Keane, P.; McComsey, D. F.;
Mitchell, J. A.; Scott, L.; Shah, R. D.; Yabut, S. C. J. Med. Chem. 1999,
42, 5254. (d) Sibi, M. P.; Shay, H. J.; Liu, M.; Jasperse, C. P. J. Am.
Chem. Soc. 1998, 120, 6615. (e) Kobayashi, S.; Ishitani, H.; Ueno, M. J.
Am. Chem. Soc. 1998, 120, 431. (f) Chung, X. X. Tetrahedron: Asymmetry
1997, 8, 5. (g) Dumas, F.; Mezrhab, B.; d’Angelo, J. J. Org. Chem. 1996,
61, 2293. (h) Davis, F. A.; Szewczyk, J. M.; Reddy, R. E. J. Org. Chem.
1996, 61, 2222. (i) Enders, D.; Wahl, H.; Bettray, W. Angew. Chem., Int.
Ed. Engl. 1995, 34, 455. (j) Wang, Z. M.; Kolb, H. C.; Sharpless, K. B.
J. Org. Chem. 1994, 59, 5104. (k) Hattori, K.; Miyata, M.; Yamamoto,
H. J. Am. Chem. Soc. 1993, 115, 1151. (l) Bunnage, M. E.; Davies, S.
G.; Goodwin, C. J. J. Chem. Soc., Perkin Trans. 1 1993, 1375. (m) Juaristi,
E.; Escalante, J.; Lamatsch, B.; Seebach, D. J. Org. Chem. 1992, 57, 2396.
(n) Deng, L.; Jacobsen, E. N. J. Org. Chem. 1992, 57, 4320. (o) Hawkins,
J. M.; Fu, G. C. J. Org. Chem. 1986, 51, 2820.
(7) Lubell, W. D.; Kitamura, M.; Noyori, R. Tetrahedron: Asymmetry 1991,
2, 543.
It is noteworthy that our catalytic system Ru-bisphosphinite can
tolerate an E/Z mixture of substrates. The ability to reduce the E/Z
mixture of â-aryl-substituted â-(acylamino)acrylates 3 is crucial
to practical synthesis of various â-aryl-substituted â-amino acids.
To the best of our knowledge, enantioselectiVities achieVed with
Ru-2c as the catalyst for hydrogenation of 3 are the highest reported
to date.
In a related area, Ru-BINAP1,2 and other Ru-phosphine systems11
were efficient for reduction of â-alkyl-substituted â-keto esters, but
only moderate to good enantioselectivities were obtained for
hydrogenation of â-aryl-substituted â-keto esters.
(8) (a) Yasutake, M.; Gridnev, I. D.; Higashi, N.; Imamoto, T. Org. Lett.
2001, 3, 1701. (b) Heller, D.; Holz, J.; Drexler, H. J.; Lang, J.; Drauz,
K.; Krimmer, H. P.; Borner, A. J. Org. Chem. 2001, 66, 6816. (c) Zhu,
G.; Chen, Z.; Zhang, X. J. Org. Chem. 1999, 64, 6907. (d) Furukawa,
M.; Okawara, T.; Noguchi, Y.; Terawaki, Y. Chem. Pharm. Bull. 1979,
27, 2223. (e) Achiwa, K.; Soga, T. Tetrahedron Lett. 1978, 1119.
(9) For the detailed experimental procedure, please see the Supporting
Information.
(10) Kitamura, M.; Tokunaga, M.; Ohkuma, T.; Noyori, R. Org. Synth. 1993,
71, 1.
(11) For TunaPhos: (a) Zhang, Z.; Qian, H.; Longmire, J.; Zhang, X. J. Org.
Chem. 2000, 65, 6223. For BIPHEP and MeO-BIPHEP: (b) Schmid, R.;
Cereghetti, M.; Heiser, B.; Schonhonlzer, P.; Hansen, H. J. HelV. Chim.
Acta 1988, 71, 897. For BPE: (c) Burk, M. J.; Harper, T. G. P.; Kalberg,
C. S. J. Am. Chem. Soc. 1995, 117, 4423. For P-Phos: (d) Pai, C. C.;
Lin, C. W.; Lin, C. C.; Chen, C. C.; Chan, A. S. C. J. Am. Chem. Soc.
2000, 122, 11513. For BITIOP: (e) Benincori, T.; Cesarotti, E.; Piccolo,
O.; Sannicolo, F. J. Org. Chem. 2000, 65, 2043.
To further expand the utility of the o-BINAPO ligands system,
we have examined Ru-catalyzed enantioselective hydrogenation of
â-aryl-substituted â-keto esters (Table 2). High enantioselectivities
JA020121U
9
J. AM. CHEM. SOC. VOL. 124, NO. 18, 2002 4953