C O M M U N I C A T I O N S
(2) Bosman, A. W.; Janssen, H. M.; Meijer, E. W. Chem. ReV. 1999, 99,
1665-1688.
(LP < 15 mmHg). Copolymer 14 was insoluble in water and only
slightly soluble in alcohols. Copolymer 14 precipitated slightly when
applied to the laceration and did not seal the wound.
(3) Fischer, M.; Vo¨gtle, F. Angew. Chem., Int. Ed. Engl. 1999, 38, 884-905.
(4) Dendrimers: Applications to Pharmaceutical and Medicinal Chemistry;
M. Dekker: New York, 1999; Vol. 18.
The hybrid linear-dendritic copolymer, 8, seals the wound better
than conventional sutures and can withstand greater pressures and
stresses placed on or around the wound site. The procedure with 8
is approximately five times faster than suturing the wound,
potentially reducing surgical time and intervention. Moreover, the
cross-linked gel of 8 is transparent, elastic, and adhesivesfavorable
properties for an ophthalmic sealant. The tissue sealing mechanism
with 8 is likely one of physical entrapment where an interpenetrating
network (IPN) is formed between the cross-linked copolymer and
the tissue. This is substantiated by the observation that the
copolymer does not seal the wound without laser polymerization.
If the copolymer is too hydrophobic an IPN does not form, as with
copolymer 14. With these concepts in mind, we are currently
designing other dendritic structures that possess high end-group
functionality while balancing the hydrophilic/hydrophobic properties
of the macromolecule to favor interpenetrating network formation
for subsequent tissue sealing.
In summary, novel aliphatic polyester-ether hybrid dendritic-
linear polymers composed of poly(ethylene glycol), glycerol, and
succinic acid are synthesized using an efficient and high yield
divergent procedure. Once prepared, these dendritic macromolecules
can be further functionalized to contain photocross-linkable groups.
The photocross-linkable dendritic gels possess sufficient tissue
adhesive properties to seal corneal lacerations. These polyester-
ether ABA-triblock copolymers further expand the polymers
available for study. Tailoring the linear and dendritic blocks will
afford macromolecules with unique and interesting chemical,
physical, and mechanical properties. Such polymers are likely to
facilitate the design, development, and use of new biomaterials for
specific tissue engineering applications.
(5) Mathews, O. A.; Shipway, A. N.; Stoddart, J. F. Prog. Polym. Sci. 1998,
23, 1-56.
(6) Zeng, F.; Zimmerman, S. C. Chem. ReV. 1997, 97, 1681-1712.
(7) Newkome, G. R.; Moorefield, C. N.; Vo¨gtle, F. Dendritic Molecules:
Concepts, Synthesis, PerspectiVes; VCH: New York, 1996.
(8) Newkome, G. R.; Moorefield, C. N.; Keith, J. N.; Baker, G. R.; Escamilla,
G. H. Angew. Chem., Int. Ed. Engl. 1994, 33, 701-703.
(9) Vo¨gtle, F.; Gestermann, S.; Hesse, R.; Schwierz, H.; Windisch, H. Prog.
Polym. Sci. 2000, 25, 987-1041.
(10) Service, R. F. Science 1995, 267, 458-459.
(11) Grayson, S. M.; Fre´chet, J. M. J. Chem. ReV. 2001, 101, 3819-3868.
(12) Fre´chet, J. M. J. Science 1994, 263, 1710-1715.
(13) Hawker, C. J.; Fre´chet, J. M. J. J. Am. Chem. Soc. 1990, 112, 7638-
7647.
(14) Issberner, J.; Moors, R.; Vo¨gtle, F. Angew. Chem., Int. Ed. Engl. 1994,
33, 2413-2420.
(15) Buhleier, W.; Wehner, F. V.; Vo¨gtle, F. Synthesis 1987, 155-158.
(16) Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.;
Roeck, J.; Ryder, J.; Smith, P. Macromolecules 1986, 19, 2466-2468.
(17) Tomalia, D. A.; Naylor, A. M.; Goddard, W. A. Angew. Chem., Int. Ed.
Engl. 1990, 29, 138-175.
(18) Lanza, R. P.; Langer, R.; Chick, W. L. Principles of Tissue Engineering;
R. G. Landes/Academic Press: San Diego, CA, 1997.
(19) Christenson, L.; Mikos, A. G.; Gibbons, D. F.; Picciolo, G. L. Tissue
Eng. 1997, 3, 71-76.
(20) Langer, R.; Vacanti, J. P. Science 1993, 260, 920-926.
(21) Peppas, N. A.; Langer, R. Science 1994, 263, 1715-1720.
(22) Sci. Am. 1999, April.
(23) Ratner, B. D.; Hoffman, A. S.; Schoen, F. J.; Lemons, J. E. Biomaterials
Science: An Introduction to Material in Medicine; Academic Press: San
Diego, CA, 2000.
(24) Sefton, M. V.; Woodhouse, K. A. J. Cutaneous Med. Surg. 1998, 3, 18-
23.
(25) Atala, A. J. ENDOUROL 2000, 14, 49-57.
(26) Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.;
Roeck, J.; Ryder, J.; Smith, P. Polym. J. 1985, 17, 117-132.
(27) Newkome, G. R.; Yao, Z.; Baker, G. R.; Gupta, V. K. J. Org. Chem.
1985, 50, 2003-2004.
(28) Carnahan, M. A.; Grinstaff, M. W. J. Am. Chem. Soc. 2001, 123, 2905-
2906.
Acknowledgment. This work was supported by the Pew
Scholars Program in the Biomedical Sciences, the Johnson and
Johnson Focused Giving Program, and the NIH (ROI-EY 13881).
We thank the North Carolina Eye Bank. M.A.C. gratefully
acknowledges the NIH Biological Chemistry Training Grant
Program at Duke University. M.W.G. also thanks the Dreyfus
Foundation for a Camille Dreyfus Teacher-Scholar, the 3M
corporation for a Non-Tenured Faculty Award, and the Alfred P.
Sloan Foundation for a Research Fellowship.
(29) Carnahan, M. A.; Grinstaff, M. W. Macromolecules 2001, 34, 7648-
7655.
(30) Ihre, H.; De Jesus, O. L. P.; Fre´chet, J. M. J. J. Am. Chem. Soc. 2001,
123, 5908-5917.
(31) Hubbell, J. A. Mater. Res. Soc. Bull. 1996, 21, 33-35.
(32) Hill-West, J.; Chowshury, S.; Slepian, M.; Hubbell, J. Proc. Natl. Acad.
Sci. 1994, 91, 5967-5971.
(33) Miki, D.; Pfister-Serres, A.; Dastghieb, K. A.; Smeds, K. A.; Inoue, M.;
Hatchell, D. L.; Grinstaff, M. W. Cornea. In press.
(34) Bruining, M. J.; Blaauwgeers, H. G. T.; Kuijer, R.; Jongsma, F. H. M.;
de Brabander, J.; Nuijts, R. M. M. A.; Koole, L. H. Biomacromolecules
2000, 1, 418-423.
(35) Elisseeff, J.; Anseth, K.; Sims, D.; McIntosh, W.; Randolph, M.; Langer,
Supporting Information Available: Detailed experimental infor-
mation and characterization data (PDF). This material is available free
R. Proc. Natl. Acad. Sci. 1999, 96, 3104-3107.
(36) Burdick, J. A.; Philpott, L. M.; Anseth, K. S. J. Polym. Sci. A 2001, 39,
683-692.
(37) Macsai, M. S.; Agarwal, S.; Gamponia, E. Cornea 1998, 17, 227-229.
(38) Varley, G. A.; Meisler, D. M. Refract. Corneal Surg. 1991, 7, 62-66.
(39) Binder, P. S. Ophthalmology 1985, 92, 1412-1416.
References
(1) Gestermann, S.; Hesse, R.; Widndisch, B.; Vo¨gtle, F. Dendritic Archi-
tectures; Wiley-VCH: Weinheim, Germany, 2000.
JA025576Y
9
J. AM. CHEM. SOC. VOL. 124, NO. 19, 2002 5293