M. Li, R. Hua / Tetrahedron Letters 50 (2009) 1478–1481
1481
4. (a) Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Angew. Chem., Int. Ed. 1997,
36, 1740–1742; (b) Dyker, G.; Borowski, S.; Heiermann, J.; Körning, J.; Opwis,
K.; Henkel, G.; Köckerling, M. J. Organomet. Chem. 2000, 606, 108–111; (c)
Bedford, R. B.; Limmert, M. E. J. Org. Chem. 2003, 68, 8669–8682; (d) Oi, S.;
Watanabe, S.-i.; Fukita, S.; Inoue, Y. Tetrahedron Lett. 2003, 44, 8665–8668; (e)
Fujita, K-i.; Nonogawa, M.; Yamaguchi, R. Chem. Commun. 2004, 1926–1927; (f)
Campean, L.-C.; Parisien, M.; Jean, A.; Fagnou, K. J. Am. Chem. Soc. 2006, 128,
581–590; (g) Özdemir, I.; Demir, S.; Cetinkaya, B.; Gourlaouen, C.; Maseras, F.;
Bruneau, C.; Dixneuf, P. H. J. Am. Chem. Soc. 2008, 130, 1156–1157; (h) Bedford,
R. B.; Betham, M.; Caffyn, A. J. M.; Charmant, J. P. H.; Lewis-Alleyne, L. C.; Long,
P. D.; Polo-Cerón, D.; Prashar, S. Chem. Commun. 2008, 990–992.
5. (a) Glover, B.; Harvey, K. A.; Liu, B.; Sharp, M. J.; Tymoschenko, M. F. Org. Lett.
2003, 5, 301–304; (b) Yanagisawa, S.; Sudo, T.; Noyori, R.; Itami, K. J. Am. Chem.
Soc. 2006, 128, 11748–11749; (c) Battace, A.; Lemhadri, M.; Zair, T.; Doucet, H.;
Santelli, M. Organometallics 2007, 26, 472–474.
6. (a) Okazawa, T.; Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem. Soc. 2002, 124,
5286–5287; (b) Masui, K.; Mori, A.; Okano, K.; Takamura, K.; Kinoshita, M.;
Ikeda, T. Org. Lett. 2004, 6, 2011–2014; (c) Yokooji, A.; Satoh, T.; Miura, M.;
Nomura, M. Tetrahedron 2004, 60, 6757–6763; (d) Borghese, A.; Geldhof, G.;
Antoine, L. Tetrahedron Lett 2006, 47, 9249–9252.
(448.0 mg, 4.0 mmol) under nitrogen in a screw-capped thick-
walled Pyrex tube was heated at 100 °C (oil bath temperature)
with stirring for 24 h. After work-up as described above, three phe-
nylpyridines 3a (as yellow oil, 74.5 mg, 0.48 mmol, 24%), 3a0 (as
yellow oil, 43.4 mg, 0.28 mmol, 14%), and 3a00 (as white solid,
34.2 mg, 0.22 mmol, 11%) were isolated. GC analysis of the reaction
mixture revealed that a mixture of three phenylpyridines in 57% of
total GC yield with o- (3a), m- (3a0), and p-phenylpyridine (3a00) in a
ratio of 44:35:21 was obtained. Compound 3a: 1H NMR (300 MHz,
CDCl3) d 8.68 (dt, 1H, J = 4.8, 1.3 Hz), 7.94–8.00 (m, 2H), 7.73–7.65
(m, 2H), 7.48–7.36 (m, 3H), 7.21–7.14 (m, 1H). 13C NMR (75 MHz,
CDCl3) d 157.5, 149.7, 139.4, 136.8, 129.0, 128.8, 127.0, 122.1,
120.6. GCMS m/z (% relative intensity): 155 (M+, 100), 127 (16),
102 (12), 77 (10); 3a0: 1H NMR (300 MHz, CDCl3) d 8.86 (s, 1H),
8.60 (m, 1H), 7.90–7.86 (m, 1H), 7.60–7.57 (m, 2H), 7.51–7.35
(m, 4H). 13C NMR (75 MHz, CDCl3) d 148.5, 148.4, 137.9, 136.8,
134.6, 129.2, 128.3, 127.3, 123.7. GC–MS m/z (% relative intensity):
155 (M+, 100), 127 (17), 102 (5), 77 (20). Compound 3a00: 1H NMR
(300 MHz, CDCl3) d 8.66 (d, 2H, J = 6.2 Hz), 7.68–7.61 (m, 2H),
7.52–7.43 (m, 5H). 13C NMR (75 MHz, CDCl3) d 150.3, 148.5,
138.2, 129.3, 129.2, 127.1, 121.8. GCMS m/z (% relative intensity):
155 (M+, 100), 140 (5), 127 (16), 115 (12), 77 (2).
7. Park, C. H.; Ryabova, V.; Seregin, I. V.; Sromek, A. W.; Gevorgyan, V. Org. Lett.
2004, 6, 1159–1162.
8. (a) Yokooji, A.; Okazawa, T.; Satoh, T.; Miura, M.; Nomura, M. Tetrahedron
2003, 59, 5685–5689; (b) Mori, A.; Sekiguchi, A.; Masui, K.; Shimada, T.;
Horie, M.; Osakada, K.; Kawamoto, M.; Ikeda, T. J. Am. Chem. Soc. 2003, 125,
1700–1701; (c) Gottumukkala, A. L.; Doucet, H. Eur. J. Inorg. Chem. 2007,
3626–3632.
9. Flegeau, E. F.; Popkin, M. E.; Greaney, M. Org. Lett. 2008, 10, 2717–2720.
10. During the preparation of this manuscript, Itami et al. reported that t-BuOK
could efficiently promote the direct C–H arylation of pyrazine and pyridine
with aryl iodides under microwave irradiation, and in the case of the reaction
of bromobenzene with pyrazine (only one example of aryl bromide used),
phenylpyrazine was obtained in 54% yield. See: Yanagisawa, S.; Ueda, K.;
Taniguchi, T.; Itami, K. Org. Lett. 2008, 10, 4673–4676; In addition, there is only
one report on the direct C–H phenylation of pyridine with halobenzene in the
presence of Pd/C promoted by Zn/H2O. See: Mukhopadhyay, S.; Rothenberg, G.;
Gitis, D.; Baidossi, M.; Ponde, D. E.; Sasson, Y. J. Chem. Soc., Perkin Trans. 2 2000,
1809–1812.
Acknowledgment
This project (20590360) was supported by National Natural Sci-
ence Foundation of China.
Supplementary data
11. Au-catalyzed: For recent reviews, see: (a) Dyker, G. Angew. Chem., Int. Ed. 2000,
39, 4237–4239; (b) Arcadi, A.; Giuseppe, S. D. Curr. Org. Chem. 2004, 8, 795–
812; (c) Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395–403; (d) Hashmi, A. S. K.
Chem. Rev. 2007, 107, 3180–3211; (e) Skouta, R.; Li, C-J. Tetrahedron 2008, 64,
4917–4938; (f) Arcadi, A. Chem. Rev. 2008, 108, 3266–3325.
General method, characterization data, and charts of 1H, 13C
NMR for all products are concluded. Supplementary data associ-
ated with this article can be found, in the online version, at
12. (a) Sun, H.-B.; Hua, R.; Li, B.; Yin, Y. Eur. J. Org. Chem. 2006, 4231–4236; (b)
Jiang, J.-L.; Ju, J.; Hua, R. Org. Biomol. Chem. 2007, 5, 1854–1857.
13. Except for entry 1 of Table 2, under the chosen reaction conditions, aryl
bromides were converted in almost quantitative yields. The competitive
reactions are the hydrodebromination of aryl bromides and the nucleophilic
substitution of aryl bromides with t-BuOK. The former reaction was the main
side reaction in the cases of electron-rich aryl bromides used, and the latter
was observed as major reaction in the cases of electron-poor aryl bromides
employed.
14. (a) Luzung, M. R.; Markham, J. P.; Toste, F. D. J. Am. Chem. Soc. 2004, 126,
10858–10859; (b) Horino, Y.; Luzung, M. R.; Toste, F. D. J. Am. Chem. Soc. 2006,
128, 11364–11365; In addition, silver salts can efficiently accelerate the
conversion of organometallic halides, see: (c) Wang, C.; Xi, Z. Chem. Soc. Rev.
2007, 36, 1395–1406.
References and notes
1. For selected reviews, see: (a) Campeau, L-C.; Fagnou, K. Chem. Commun. 2006,
1253–1264; (b) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107,
174–238; (c) Satoh, T.; Miura, M. Chem. Lett. 2007, 36, 200–205; (d) Seregin, I.
V.; Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173–1193.
2. For selected reviews, see: (a) Suzuki, A. Pure Appl. Chem. 1991, 63, 419–422; (b)
Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–2483; (c) Suzuki, A. J.
Organomet. Chem. 1999, 576, 147–168; (d) Miyaura, N. Top. Curr. Chem. 2002, 219,
11–59; (e) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58, 9633–9695.
3. For selected reviews, see: (a) Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25,
508–524; (b) Mitchell, T. N. Synthesis 1992, 803–815.
15. In the present catalytic procedure, t-BuOK is considered to be the efficient
reductant to reduce Au(II) to Au(I) and promote the catalytic cycle. Ref. 4e.