J . Org. Chem. 2002, 67, 3915-3918
3915
Sch em e 1
Gen er a tion of 1-Aza p en ta d ien yl An ion fr om
N-(ter t-Bu tyld im eth ylsilyl)-3-bu ten -1-a m in e
Madeleine A. J acobson and Paul G. Williard*
Department of Chemistry, Brown University,
Providence, Rhode Island 02912
Paul_Williard@brown.edu
Received October 24, 2001
pentadienyl derivatives from silicon,5 germanium and
tin,2c,6 and related compounds7 have been made and
studied to investigate the related chemistry of these
species, and to explore their use in transmetalation
reactions. Wu¨rthwein and co-workers have carried out
extensive studies on the experimental and theoretical
chemistry of lithium azapentadienyl species,8 and Pear-
son et. al. have, among other things, synthesized pyrro-
lidines, 1-pyrrolines, and pyrroles by the [4πs + 2πs]
cycloaddition of nonstabilized 2-azaallyl anions with
alkenes.9
1-Azapentadienyl anions, upon which this report fo-
cuses, are useful ambident nucleophiles in organic
synthesis.5a,7a,10 Wu¨rthwein has generated 1-azapenta-
dienylanions from N-(tert-butyl)crotanaldimine, using
LDA in THF at -15 °C.8c These anions are synthetically
useful and add to R,â-unsaturated carbonyls in a Michael
fashion to generate, after hydrolysis, the corresponding
aldehydes and ketones.
Abstr a ct: N-(tert-Butyldimethylsilyl)-3-buten-1-amine un-
dergoes allylic deprotonation at the 2-position when exposed
to 2 equiv of nBuLi in THF. This allylic anion undergoes
lithium hydride elimination to generate a 1-azapentadienyl
anion. The anion is generated cleanly and completely.
Much work has been done on pentadienyl anions.1 They
have been shown to be useful reagents in the preparation
of interesting acyclic complexes.2 Pentadienyl anions are
also valuable precursors for pentadienylsilanes and stan-
nanes, through which aldehydes or ketones can be
converted to dienyl alcohols.3 Silylated and tin penta-
dienyl complexes are useful intermediates in synthetic
organic synthesis, either as reagents for selective trans-
formations or as intermediates for the creation of carbon-
carbon bonds. The high selectivity of the tin-carbon bond
cleavage in transmetalations, transition-metal catalyzed
couplings, and direct reactions is well established.4 As
an extension of the wealth of pentadienyl anion chemistry
that abounds, azapentadienyl anions have attracted
attention in both organic and inorganic chemistry. Aza-
In this work, we have discovered that N-(tert-but-
yldimethylsilyl)-3-buten-1-amine (1) unexpectedly gener-
ates the 1-azapentadienyl anion (3) when exposed to 2
equiv of nBuLi in THF, as depicted in Scheme 1. The
anion is generated cleanly and completely.
(1) (a) Yasuda, H.; Nakamura, A. J . Organomet. Chem. 1985, 285,
15 and references therein. (b) Powell, P. Adv. Organomet. Chem. 1986,
26, 125 and references therein. (c) Wilson, D. R.; Stahl, L.; Ernst, R.
D. Organometallic Synthesis; King, R. B., Eisch, J . J ., Eds.; Elsevier
Science: Amsterdam, 1986, 3, 136.
(5) (a) Takabe, K.; Fukiwara, H.; Katagiri, T.; Tanaka, J . Tetrahe-
dron Lett. 1975, 16, 1273. (b) Bellassoued, M.; Salemkour, M. Tetra-
hedron Lett. 1993, 34, 5281. (c) Bellassoued, M.; Majidi, A. J .
Organomet. Chem. 1993, 444, C7. (d) Bellassoued, M.; Salemkour, M.
Tetrahedron 1996, 52, 4607.
(6) (a) Pearson, W. H.; Barta, N. S.; Kampf, J . W. Tetrahedron Lett.
1997, 38, 3369. (b) Gutierrez, J . A.; Paz-Sandoval, M. A.; Robles, J . J .
Organomet. Chem. 2000, 599, 147.
(2) For examples of open metallocenes, see: (a) Ernst, R. D. Chem.
Rev. 1988, 88, 1255. (b) Ernst, R. D.; Freeman, J . W.; Swepston, P.
N.; Wilson, D. R. J . Organomet. Chem. 1991, 402, 17. (c) Newbound,
T. D.; Rheingold, A. L.; Ernst, R. D. Organometallics 1992, 11, 1693.
(d) Kralik, M. S.; Stahl, L.; Arif, A. M.; Strouse, C. E.; Ernst, R. D.
Organometallics 1992, 11, 3617. (e) Waldman, T. E.; Stahl, L.; Wilson,
D. R.; Arif, A. M.; Hutchinson, J . P.; Ernst, R. D. Organometallics 1993,
12, 1543. (f) Waldman, T. E.; Waltermire, B.; Rheingold, A. L.; Ernst,
R. D. Organometallics 1993, 12, 4161. (g) Weng, W.; Arif, A. M.; Ernst,
R. D. Organometallics 1993, 12, 1537. (h) Trakarnpruk, W.; Arif, A.
M.; Ernst, R. D. J . Organomet. Chem. 1995, 485, 25. For examples of
half-open-metallocenes, see: (i) Kralik, M. S.; Stahl, L.; Arif, A. M.;
Strouse, C. E.; Ernst, R. D. Organometallics 1992, 11, 3617. (j)
Trakarnpruk, W.; Arif, A. M.; Ernst, R. D. Organometallics 1992, 11,
1686. (k) Gedridge, R. W.; Hutchinson, J . P.; Rheingold, A. L.; Ernst,
R. D. Organometallics 1993, 12, 1553. (l) Hyla-Kryspin, I.; Waldman,
T. E.; Melendez, E.; Trakarnpruk, W.; Arif, A. M.; Ziegler, M. L.; Ernst,
R. D.; Gleiter, R. Organometallics 1995, 14, 5030. For other half-
sandwich transition metal complexes, see: (m) Bleeke, J . R.; Hays,
M. K.; Wittenbrink, R. J . Organometallics 1988, 7, 1417 and references
therein. (n) Bleeke, J . R.; Wittenbrink, R. J . J . Organomet. Chem. 1991,
405, 121. (o) Schumann, H.; Dietrich, A. J . Organomet. Chem. 1991,
401, C33. (p) Newbound, T. D.; Arif, A. M.; Wilson, D. R.; Rheingold,
A. L.; Ernst, R. D. J . Organomet. Chem. 1992, 435, 73. (q) Kunze, K.;
Arif, A. M.; Ernst, R. D. Bull. Soc. Chim. Fr. 1993, 130, 708. (r) Bleeke,
J . R.; Luaders, S. T.; Robinson, K. D. Organometallics 1994, 13, 1592.
(s) Arif, A. M.; Ernst, R. D.; Melendez, E.; Rheingold, A. L.; Waldman,
T. E. Organometallics 1995, 14, 1761. (t) Bleeke, J . R.; Luaders, S. T.
Organometallics 1995, 14, 1667. (u) Gutierrez, J . A.; Navarro Clemente,
Ma. E.; Paz-Sandoval, M. A.; Arif, A. M.; Ernst, R. D. Organometallics
1999, 18, 1068.
(7) (a) Ahlbrecht, H.; Liesching, D. Synthesis 1976, 746. (b) Ahlbre-
cht, H.; Du¨ber, E.-O. Synthesis 1980, 630. (c) Ahlbrecht, H.; Du¨ber,
E.-O. Synthesis 1982, 273. (d) Barluenga, J .; J oglar, J .; Fustero, S.;
Gotor, V. J . Chem. Soc., Chem. Commun. 1986, 361. (e) Armstrong,
D. R.; Clegg, W.; Dunbar, L.; Liddle, S. T.; MacGregor, M.; Mulvey, R.
E.; Reed, D.; Quinn, S. A. J . Chem. Soc., Dalton Trans. 1998, 20 3431.
(8) (a) Wu¨rthwein, E.-U.; Wilhelm, E.; Seitz, B. Tetrahedron Lett.
1983, 24, 581. (b) Wolf, G.; Wu¨rthwein, E.-U. Tetrahedron Lett. 1988,
29, 3647 (c) Baumann, F.; Wu¨rthwein, E.-U. Tetrahedron Lett. 1991,
32, 4683. (d) Wolf, G.; Wu¨rthwein, E.-U. Chem. Ber. 1991, 124, 889.
(e) Wegmann, S.; Wu¨rthwein, E.-U. Tetrahedron Lett. 1993, 34, 307.
(f) Schulte, N.; Fro¨hlich, R.; Hecht, J .; Wu¨rthwein, E.-U. Liebigs Annal.
Chem. 1996, 371. (g) Stakemeier, H.; Wu¨rthwein, E.-U. Liebigs Annal.
Chem. 1996, 1833. (h) Ko¨nemann, M.; Erker, G.; Fro¨hlich, R.; Wu¨rth-
wein, E.-U. J . Am. Chem. Soc. 1997, 119, 11155 and references therein.
(9) (a) Pearson, W. H.; Szura, D. P.; Harter, W. G. Tetrahedron Lett.
1988, 29, 761. (b) Pearson, W. H.; Szura, D. P.; Postich, M. J . J . Am.
Chem. Soc. 1992, 114, 1329. (c) Pearson, W. H.; Postich, M. J . J . Org.
Chem. 1992, 57, 6354. (d) Pearson, W. H.; Stevens, E. P. Tetrahedron
Lett. 1994, 35, 2641. (e) Pearson, W. H.; Postich, M. J . J . Org. Chem.
1994, 59, 5662. (f) Pearson, W. H.; Lovering, F. E. Tetrahedron Lett.
1994, 35, 9173. (g) Pearson, W. H.; Lovering, F. E. J . Am. Chem. Soc.
1995, 117, 12336.
(10) (a) Stork, G.; Benaim, J . J . Am. Chem. Soc. 1971, 93, 5938. (b)
Oppolzer, W.; Fro¨stl, W. Helv. Chim. Acta 1975, 58, 587. (c) Kiecz-
ykowski, G. R.; Schlessinger, R. H.; Sulsky, R. B. Tetrahedron Lett.
1976, 17, 597 (d) Corey, E. J .; Enders, D. Chem. Ber. 1978, 111, 1337,
1362. (e) Vedejs, E.; Gapinski, D. M. Tetrahedron Lett. 1981, 22, 4913.
(3) (a) Seyferth, D.; Pornet, J . J . Org. Chem. 1980, 45, 1721. (b)
Hosomi, A.; Saito, M.; Sakurai, H. Tetrahedron Lett. 1980, 26, 3783.
(4) Pereyre, M.; Quintard, J .-P.; Rahm, A. Tin in Organic Synthesis;
Butterworth: London, 1987.
10.1021/jo0162336 CCC: $22.00 © 2002 American Chemical Society
Published on Web 04/26/2002