MedChemComm
Concise Article
malaria) to gauge for the selectivity of the anti-trypanosomal
activity. The compounds were also screened against rat skeletal
myoblasts (L6 cells), as an additional measure of the selectivity
of the anti-trypanosomal activity over mammalian cells. Grati-
fyingly, all of the compounds proved to be more potent inhib-
itors of T. b. rhodesiense compared with the other species of
protozoa investigated (Table 2). Indeed, while compounds
exhibited high nanomolar-low micromolar inhibition of
T. b. rhodesiense (IC50 ¼ 0.37–9.7 mM), most compounds dis-
played moderate activity against T. cruzi, L. donovani and P.
falciparum (Table 3). For the most part, the compounds also
showed signicant selectivity for T. b. rhodesiense over the rat
skeletal myoblast (L6) cell line. The most potent inhibitors of
T. b. rhodesiense were the 4-ethoxy substituted compounds 17
and 37 (IC50 values of 0.37 mM and 0.46 mM) containing 2-
methylpiperidyl and N,N-diisopropylamide functionalities,
respectively. Notably, both 17 and 37 were more potent inhibi-
4 R. Brun, J. Blum, F. Chappuis and C. Burri, Lancet, 2010, 375,
148–159.
5 S. C. Welburn, E. M. Fevre, P. G. Coleman, M. Odiit and
I. Maudlin, Trends Parasitol., 2001, 17, 19–24.
6 World Health Organization, Working to Overcome the Global
Impact of Neglected Tropical Diseases, Report WHO/HTM/
NTD/2010.1, 2010.
7 M. P. Barrett, R. J. S. Burchmore, A. Stich, J. O. Lazzari,
A. C. Frasch, J. J. Cazzulo and S. Krishna, Lancet, 2003, 362,
1469–1480.
8 S. L. Wastling, K. Picozzi, C. Wamboga, W. B. Von,
C. Amongi-Accup, N. A. Wardrop, J. R. Stothard,
A. Kakembo and S. C. Welburn, Parasitology, 2011, 138,
1480–1487.
9 O. Wengert, M. Kopp, E. Siebert, W. Stenzel, G. Hegasy,
N. Suttorp, A. Stich and T. Zoller, Parasitol. Int., 2014, 63,
557–560.
tors of T. b. rhodesiense growth than against the non-human 10 P. P. Simarro, A. Diarra, P. J. A. Ruiz, J. R. Franco and
infective protozoa T. b. brucei. Substituting the 2-piperidyl J. G. Jannin, PLoS Neglected Trop. Dis., 2011, 5, e1007.
substituent in 17 with a piperidyl (in 23), 3-piperidyl (in 1) or 11 D. Legros, G. Ollivier, M. Gastellu-Etchegorry, C. Paquet,
¨
aniline (in 34) moiety led to a signicant drop in activity against
T. b. rhodesiense. Compounds 39–41, where the central aryl
C. Burri, J. Jannin and P. Buscher, Lancet Infect. Dis., 2002,
2, 437–440.
moiety was replaced with a exible alkyl linker, proved to be 12 P. G. E. Kennedy, J. Clin. Invest., 2004, 113, 496–504.
equipotent against T. b. rhodesiense (IC50 ¼ 4.7–7.9 mM) and 13 M. P. Barrett, Curr. Opin. Infect. Dis., 2010, 23, 603–608.
T. b. brucei (see ESI† for data). Of all the compounds screened, 14 R. T. Jacobs, B. Nare and M. A. Phillips, Curr. Top. Med.
37 showed the most signicant selectivity for T. b. rhodesiense
over human cell lines and therefore serves as a promising lead 15 A. J. Bitonti, P. P. McCann and A. Sjoerdsma, Biochem.
for further development. Pharmacol., 1986, 35, 331–334.
In summary, we have reported the synthesis of a library of 16 L. Ghoda, M. A. Phillips, K. E. Bass, C. C. Wang and
analogues based around the structure of phenox- P. Coffino, J. Biol. Chem., 1990, 265, 11823–11826.
ymethylbenzamide hit elucidated through an HTS campaign. 17 M. A. Phillips, P. Coffino and C. C. Wang, J. Biol. Chem., 1988,
Several members of the compound library exhibited potent 263, 17933–17941.
activity against the non-human infective trypanosome strain 18 C. J. Bacchi, H. C. Nathan, S. H. Hutner, P. P. McCann and
T. b. brucei, as well as good selectivity over mammalian cell lines. A. Sjoerdsma, Science, 1980, 210, 332–334.
Chem., 2011, 11, 1255–1274.
a
Several compounds also demonstrated potent inhibitory activity 19 C. Burri and R. Brun, Parasitol. Res., 2003, 90, S49–S52.
against T. b. rhodesiense with the most active compound 17 pos- 20 B. Raz, M. Iten, Y. Grether-Buhler, R. Kaminsky and R. Brun,
sessing an IC50 value of 365 nM. The novel class of anti-trypano-
Acta Trop., 1997, 68, 139–147.
somal agents described here provides an opportunity for further 21 Z. B. Mackey, A. M. Baca, J. P. Mallari, B. Apsel, A. Shelat,
medicinal chemistry efforts, both to optimise the activity against
pathogenic T. brucei species and to assess the ADME and PK
E. J. Hansell, P. K. Chiang, B. Wolff, K. R. Guy, J. Williams
and J. H. McKerrow, Chem. Biol. Drug Des., 2006, 67, 355–363.
properties of this class of compounds. Furthermore, chemical 22 M. L. Sykes, J. B. Baell, M. Kaiser, E. Chatelain, S. R. Moawad,
biology approaches will also be pursued in order to elucidate the
molecular target of these compounds in the parasite, to aid in the
design of second generation compounds.
D. Ganame, J.-R. Ioset and V. M. Avery, PLoS Neglected Trop.
Dis., 2012, 6, e1896.
23 L. Ferrins, C. Hyland, K. L. White, E. Ryan, M. Campbell,
S. A. Charman, M. Kaiser, J. B. Baell, R. Rahmani,
M. L. Sykes, A. J. Jones, V. M. Avery, E. Teston,
B. Almohaywi, J. Yin and J. Smith, Eur. J. Med. Chem.,
2013, 66, 450.
Notes and references
1 World Health Organization, Human African trypanosomiasis
(sleeping sickness) Fact sheet Nꢁ259, 2014, http://
24 A. A. Rashad, A. J. Jones, V. M. Avery, J. Baell and P. A. Keller,
ACS Med. Chem. Lett., 2014, 5, 496–500.
2 World Health Organization, Epidemiology and control of
African trypanosomiasis. Report of a WHO expert committee.
Technical Report Series, No. 881, Report 92 4 120881 3,
Geneva, Switzerland, 1998.
25 H. Pajouhesh and G. R. Lenz, NeuroRx, 2005, 2, 541–553.
26 Y. Okada, M. Yokozawa, M. Akiba, K. Oishi, K. Okawa,
T. Akeboshi, Y. Kawamura, S. Inokuma, Y. Nakamura and
J. Nishimura, Org. Biomol. Chem., 2003, 1, 2506–2511.
27 M. L. Sykes and V. M. Avery, Am. J. Trop. Med. Hyg., 2009, 81,
665–674.
¨
3 P. Buscher and V. Lejon, in The Trypanosomiases, ed. I.
Maudlin, P. H. Holmes and M. A. Miles, CABI Publishing,
Wallingford, 2004, pp. 203–218.
Med. Chem. Commun.
This journal is © The Royal Society of Chemistry 2014