Organometallics 2002, 21, 2343-2346
2343
3
Th e (ππ*) Em ission of Cy3P Au (CtC)n Au P Cy3 (n ) 3, 4).
3
Effect of Ch a in Len gth u p on Acetylen ic (ππ*) Em ission
Wei Lu, Hai-Feng Xiang, Nianyong Zhu, and Chi-Ming Che*
Department of Chemistry and the HKU-CAS J oint Laboratory on New Materials,
The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
Received December 27, 2001
Ch a r t 1
Summary: The Cy3PAu(CtC)nAuPCy3 (n ) 3 (3) , 4 (4))
complexes were prepared by the reaction of Me3Si-
(CtC)nSiMe3 (n ) 3, 4) with Cy3PAuCl in the presence
of NaOH. The molecular structure of 3‚CH2Cl2 was
determined by X-ray crystallography. Complexes 3 and
4 show vibronically structured acetylenic 3(ππ*) emission
with ν0-0 values of 19 920 and 17 420 cm-1, respectively;
hence, ν0-0 for Cy3PAu(CtC)∞AuPCy3 can be estimated
at ∼11 000 cm-1 from the plot of ν0-0 versus 1/ n.
While rigid, π-conjugated sp carbon chains have been
incorporated as building blocks into myriads of elec-
tronic optics (molecular wires, NLOs),1 spectroscopic
investigations, especially regarding electronic transi-
tions associated with (CtC)n2- chains, are sparse.1g,2-7
Fundamental studies on the spectroscopic properties of
oligoynes will facilitate the design of advanced opto-
quire sufficient allowedness via Au spin-orbit coupling
to appear prominently in both electronic absorption and
emission spectra. The λ0-0 lines for 1 and 2 are observed
at 331 and 413 nm, respectively. The following questions
naturally arise: what are the λ0-0 values of the acety-
lenic 3(ππ*) excited states of the higher homologues, and
is there a limit for the λ0-0 values? That is, how red can
the triplet emission of (CtC)n2- chains be manipulated?
The two higher homologues, Cy3PAu(CtC)3AuPCy3
(3) and Cy3PAu(CtC)4AuPCy3 (4), have been synthe-
sized. The reaction of Me3Si(CtC)3SiMe3 and Me3Si-
(CtC)4SiMe3 with Cy3PAuCl in MeOH in the presence
of NaOH gave the desired complexes as air-stable pale
yellow plates and needles, respectively, after flash
chromatography on alumina and recrystallization from
CH2Cl2/Et2O. These two complexes feature the unprec-
edented dinuclear gold(I) complexes bridged by C62- and
electronic materials; for example, the triplet emission
2-
from (CtC)n
chains could be of great interest for
OLED applications8 and characterization of one-dimen-
sional carbon allotrope, i.e., carbyne.9 On the basis of
the UV/vis spectra of monodispersed oligomers, Hirsch7
and Gladysz4a estimated the limit of the lowest energy
1(ππ*) absorption of R(CtC)∞R (R ) CN, tBu, Et3Si, (η5-
C5Me5)Re(NO)(PPh3)) to be λmax 550 nm, irrespective of
end groups. Our recent work10 on luminescent Cy3PAu-
(CtC)nAuPCy3 (n ) 1 (1), 2 (2)) (Chart 1) revealed that
3
the lowest-energy acetylenic (ππ*) excited states ac-
2-
C8 rods. Although the cyclohexyl groups of the phos-
phine ligands render improved solubility for these two
complexes, they are still difficult to dissolve in common
organic solvents, even CH2Cl2 and CHCl3. We have been
able to obtain dilute CH2Cl2 solutions of 3 and 4, so that
spectroscopic properties in fluid solutions can be ex-
plored.
Figure 1 shows the perspective view of 3‚CH2Cl2,
which has a dumbbell shape with the crystallographic
rotation center located at the center of the hexatriynediyl
* To whom correspondence should be addressed. Fax: (852) 2857
1586. E-mail: cmche@hku.hk.
(1) Recent reviews: (a) Manna, J .; J ohn, K. D.; Hopkins, M. D. Adv.
Organomet. Chem. 1995, 38, 79. (b) Bruce, M. I. Coord. Chem. Rev.
1997, 166, 91. (c) Swager, T. M. Acc. Chem. Res. 1998, 31, 201. (d)
Paul, F.; Lapinte, C. Coord. Chem. Rev. 1998, 178-180, 427. (e)
Schwab, P. F. H.; Levin, M. D.; Michl, J . Chem. Rev. 1999, 99, 1863.
(f) Martin, R. E.; Diederich, F. Angew. Chem., Int. Ed. 1999, 38, 1350.
(g) Bunz, U. H. F. Chem. Rev. 2000, 100, 1605.
(2) Lewis, J .; Khan, M. S.; Kakkar; A. K.; J ohnson, B. F. G.; Marder,
T. B.; Fyfe, H. B.; Wittmann, F.; Friend, R. H.; Dray, A. E. J .
Organomet. Chem. 1992, 425, 165.
(3) Wilson, J . S.; Chawdhury, N.; Al-Mandhary, M. R. A.; Younus,
M.; Khan, M. S.; Raithby, P. R.; Ko¨hler, A.; Friend, R. H. J . Am. Chem.
Soc. 2001, 123, 9412 and references therein.
(4) (a) Dembinski, R.; Bartik, T.; Bartik, B.; J aeger, M.; Gladysz, J .
A. J . Am. Chem. Soc. 2000, 122, 810 and references therein. (b) Mohr,
W.; Stahl, J .; Hampel, F.; Gladysz, J . A. Inorg. Chem. 2001, 40, 3263.
(5) Bruce, M. I.; Low, P. J .; Costuas, K.; Halet, J . F.; Best, S. P.;
Heath, G. A. J . Am. Chem. Soc. 2000, 122, 1949.
unit. The two-coordinate Au atoms are bridged by a
2-
virtually linear C6
chain with P(1)-Au(1)-C(1),
Au(1)-C(1)-C(2), C(1)-C(2)-C(3), and C(2)-C(3)-
C(3*) angles of 174.1(2), 172.6(8), 176.7(9), and
179.4(14)°, respectively. Comparable crystallographic
data for bridging acetylenic units have been well-
documented by Gladysz,4 Bruce,11 Lapinte,12 and
Akita.13 The closest intramolecular nonbonded contacts
(6) Vila, F.; Borowski, P.; J ordan, K. D. J . Phys. Chem. A 2000, 104,
9009.
(7) Schermann, G.; Gro¨sser, T.; Hampel, F.; Hirsch, A. Chem. Eur.
J . 1997, 3, 1105.
(8) Baldo, M. A.; O’Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.;
Thompson, M. E.; Forrest, S. R. Nature 1998, 395, 151.
(9) Baitinger, E. M. In Carbyne and Carbynoid Structures; Heimann,
R. B., Evsyukov, S. E., Kavan, L., Eds.; Kluwer Academic: Boston,
1999; Chapter 4, p 333.
(10) Che, C. M.; Chao, H. Y.; Miskowski, V. M.; Li, Y.; Cheung, K.
K. J . Am. Chem. Soc. 2001, 123, 4985.
(11) Bruce, M. I.; Hall, B. C.; Kelly, B. D.; Low, P. J .; Skelton, B.
W.; White, A. H. J . Chem. Soc., Dalton Trans. 1999, 3719 and
references therein.
(12) Guillemot, M.; Toupet, L.; Lapinte, C. Organometallics 1998,
17, 1928 and references therein.
(13) Sakurai, A.; Akita, M.; Moro-oka, Y. Organometallics 1999, 18,
3241 and references therein.
10.1021/om011087f CCC: $22.00 © 2002 American Chemical Society
Publication on Web 05/03/2002