560
N. W. Fadnavis et al.
PAPER
MS: m/z = 173 (M + 1).
References
(1) (a) Pagliaro, M.; Ciriminna, R.; Kimura, H.; Rossi, M.; Pina,
C. D. Angew. Chem. Int. Ed. 2007, 46, 4434. (b)Corma,A.;
Iborra, S.; Velty, A. Chem. Rev. 2007, 107, 2411.
(c) Armaroli, N.; Balzani, V. Angew. Chem. Int. Ed. 2007,
46, 52. (d) Chheda, J. N.; Huber, G. W.; Dumesic, J. A.
Angew. Chem. Int. Ed. 2007, 46, 7164.
(2) (a) Klepacova, K.; Mravec, D.; Kaszonyi, A.; Bajus, M.
Appl. Catal., A 2007, 328, 1. (b) Ott, L.; Bicker, M.; Vogel,
H. Green Chem. 2006, 8, 214. (c) Chai, S.-H.; Wang, H.-P.;
Liang, Y.; Xu, B.-Q. Green Chem. 2007, 9, 1130.
(3) Walsh, R. H. US 5268007, 1993.
2-Methyl-2-phenyl-1,3-dioxolane-4-methanol (1e)
GC: tR = 12.42 and 12.56 (1e), 16.06 and 16.22 (2e) min.
IR (CHCl3): 3358 (br), 2925, 2358, 1216, 1042 cm–1.
1H NMR (300 MHz, CDCl3): d = 7.49–7.22 (m, 5 H), 4.39–4.29 (m,
1 H), 4.20–4.01 (m, 1 H), 3.90–3.55 (m, 3 H), 1.80 (br s, 1 H), 1.60
and 1.65 (2 s, 3 H).
13C NMR(75 MHz, CDCl3): d = 142.98, 128.20, 127.88, 125.21
(CPh), 109.63 (C2), 75.96 (C4), 66.19 and 65.69 (C5), 63.35 and
62.82 (CH2OH), 28.09 and 27.95 (CH3).
MS: m/z = 195 (M + 1).
(4) Seemuth, P. D. US 4457763, 1984.
(5) Jurczac, J.; Pikul, S.; Bauer, T. Tetrahedron 1986, 42, 447.
(6) He, D. Y.; Li, Z. J.; Liu, Y. Q.; Qiu, D. X.; Cai, M. S. Synth.
Commun. 1992, 22, 2653.
(7) (a) Kazumasa, H.; Furukawa, Y. US 6143908, 2000.
(b) Kazumasa, H.; Furukawa, Y. US 6124479, 2000.
(8) (a) Kozhevnikow, I. V. Chem. Rev. 1998, 98, 171.
(b) Mizuno, N.; Misono, M. Chem. Rev. 1998, 98, 199.
(c) Misono, M.; Ono, K.; Aoshima, G. A. Pure Appl. Chem.
2000, 72, 1305.
2,2-Diphenyl-1,3-dioxolane-4-methanol (1f)
IR (CHCl3): 3436 (br), 3059, 2939, 2888, 1262, 1207, 1088, 1027,
995 cm–1.
1H NMR (300 MHz, CDCl3): d = 7.56–7.23 (m, 10 H), 4.37–4.27
(m, 1 H), 4.06–3.96 (m, 2 H), 3.84–3.76 (m, 1 H), 3.68–3.58 (m, 1
H), 1.80–1.75 (m, 1 H).
13C NMR (75 MHz, CDCl3): d = 141.94, 128.17, 126.18, 125.97
(CPh), 110.04 (C2), 76.36 (C4), 66.19 (C5), 63.08 (CH2OH).
(9) Kitamura, M.; Isobe, M.; Ichikawa, Y.; Goto, T. J. Am.
Chem. Soc. 1984, 106, 3252.
MS: m/z = 257 (M + 1).
(10) (a) Izumi, Y.; Hasebe, R.; Urabe, K. J. Catal. 1983, 84, 402.
(b) Yadav, J. S.; Satyanarayana, M.; Balanarsaiah, E.;
Raghavendra, S. Tetrahedron Lett. 2006, 47, 6095.
(c) Nagaiah, K.; Sreenu, D.; Srinivasa Rao, R.; Vashishta,
G.; Yadav, J. S. Tetrahedron Lett. 2006, 47, 4409.
(d) Abd El-Wahab, M. M. M.; Said, A. A. J Mol. Catal. A:
Chem. 2005, 240, 109. (e) Yadav, J. S.; Raghavendra, S.;
Satyanarayana, M.; Balanarsaiah, E. Synlett 2005, 2461.
(11) (a) Radoslovich, E. W.; Raupach, M.; Slade, P. G.; Taylor,
R. M. Aust. J. Chem. 1970, 23, 1963. (b) Taylor, R. M.;
Brock, A. J. US 4544761, 1985.
PMA–Glycerol Complex
The dark blue PMA–glycerol complex recovered after the reaction
with acetone was washed with a large excess of boiling acetone (2
×) and the blue-black powder was dried under vacuum at 60 °C for
12 h (13 g, 95%). Elemental analysis indicates complexation of 10
glycerol molecules and 2 H2O molecules with one PMA molecule.
Anal. Calcd for C30H67Mo12O72P: C, 13.03; H, 2.42; Mo, 41.71; P,
1.12. Found: C, 13.01; H, 2.51; Mo, 35.3; P, 1.14.
Due to inherent nature of heteropoly acids, the phosphorus/molyb-
denum ratio is not exact.
(12) Tsigdinos, G. A.; Hallada, C. J. Inorg. Chem. 1968, 7, 437.
Acknowledgment
We thank the Council of Scientific and Industrial Research (CSIR),
New Delhi and the University Grants Commission (UGC) for finan-
cial support.
Synthesis 2009, No. 4, 557–560 © Thieme Stuttgart · New York