1120
S. Sengupta et al. / Tetrahedron Letters 43 (2002) 1117–1121
Scheme 3.
anthracene core, some contribution from orbital over-
lap cannot be ruled out. A Fo¨rster’s type through-space
(singletsinglet) mechanism is more likely to operate in
this system, especially in view of spectral overlap
between the stilbene fluorescence and the core absorp-
tion bands. Although, at this moment, we do not have
a satisfactory explanation for the inefficient energy
transfer in 14, the presence of only four peripheral
energy collection sites and also that these are in the
form of para-substituted stilbene units which usually
have very short fluorescence lifetimes,17 may be the
reason for the low transduction of energy.18
References
1. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.;
Marks, R. N.; Mackay, K.; Friend, R. H.; Burn, P. L.;
Holmes, A. B. Nature 1990, 347, 539.
2. (a) Meier, H. Angew. Chem., Int. Ed. Engl. 1992, 31,
1399; (b) Kraft, A.; Grimsdale, A. C.; Holmes, A. B.
Angew. Chem., Int. Ed. Engl. 1998, 37, 402; (c) Mitschke,
U.; Ba¨urele, P. J. Mater. Chem. 2000, 10, 1471.
3. (a) Martin, R. E.; Diederich, F. Angew. Chem., Int. Ed.
Engl. 1999, 38, 1350; (b) Segura, J. L.; Mart´ın, N. J.
Mater. Chem. 2000, 10, 2403.
4. (a) Halim, M.; Pillow, J. N. G.; Samuel, I. D. W.; Burn,
P. L. Adv. Mater. 1999, 11, 371; (b) Pillow, J. N. G.;
Halim, M.; Lupton, J. M.; Burn, P. L.; Samuel, I. D. W.
Macromolecules 1999, 32, 5985.
5. (a) Conwell, E. Trends Polym. Sci. 1997, 5, 218; (b)
Cornil, J.; dos Santos, D. A.; Crispin, X.; Silbey, R.;
Bre´das, J.-L. J. Am. Chem. Soc. 1998, 120, 1289; (c)
Nguyen, T.-C.; Martini, I. B.; Liu, J.; Schwartz, B. J. J. J.
Phys. Chem. 2000, 104, 237; (d) Catala´n, J.; Zima´nyi, L.;
Saltiel, J. J. Am. Chem. Soc. 2000, 122, 2377.
6. (a) Newkome, G. R.; Moorefield, C. N.; Vo¨gtle, F.
Dendritic Macromolecules: Concepts, Syntheses, Perspec-
tives; VCH: Weinheim, 1996; (b) Chow, H. F.; Mong, T.
K. K.; Nongrum, M. F.; Wan, C. W. Tetrahedron 1998,
54, 8543; (c) Smith, D. K.; Diederich, F. Chem. Eur. J.
1998, 4, 1353; (d) Fischer, M.; Vo¨gtle, F. Angew. Chem.,
Int. Ed. Engl. 1999, 38, 884; (e) Newkome, G. R.; He, E.;
Moorefield, C. N. Chem. Rev. 1999, 99, 1689.
7. (a) Deb, S. K.; Maddux, T. M.; Yu, L. J. Am. Chem. Soc.
1997, 119, 9079; (b) Meier, H.; Lehmann, M. Angew.
Chem., Int. Ed. Engl. 1998, 37, 643; (c) Meier, H.; Leh-
mann, M.; Kolb, U. Chem. Eur. J. 2000, 6, 2462; (d)
D´ıez-Barra, E.; Garc´ıa-Mart´ınez, J. C.; Rodr´ıguez-Lo´pez,
J.; Go´mez, R.; Segura, J. L.; Mart´ın, N. Org. Lett. 2000,
2, 3651; (e) Segura, J. L.; Go´mez, R.; Mart´ın, N.; Guldi,
D. M. Org. Lett. 2001, 3, 2645; (f) D´ıez-Barra, E.;
Garc´ıa-Mart´ınez, J. C.; Merino, S.; del Rey, R.;
Rodr´ıguez-Lo´pez, J.; Sa´nchez-Verdu´, P.; Tejeda, J. J.
Org. Chem. 2001, 66, 5664.
As an additional example of our Heck reaction strat-
egy, a twofold Heck reaction of 12 was also carried out
with trans-4,4%-dibromostilbene (15)19 which led to the
highly fluorescent dumb-bell shaped dendrimer 1620
having an all-trans distyrylstilbene core (Scheme 3).
However, the isolated yield of 16 was poor (16%),
mainly due to limited solubility of the mono- and
bis-coupled products which led to incomplete conver-
sions together with a considerable loss of material
during the isolation and purification steps. Neverthe-
less, 16 should serve as a good oligomeric model for
end-capped PPVs in photophysical studies.3a,21
In conclusion, a new synthetic strategy for dendritic
stilbenoid compounds has been described which uses
multifold Heck reactions to construct both the periph-
eral and core stilbene units. Since multifold Heck reac-
tions on poly-haloarenes is currently an established
synthetic repertoire,8 synthesis of stilbenoid dendrimers
having high core-branching can be readily achieved via
the present strategy. We are presently exploring these
possibilities.
Acknowledgements
Professor Samaresh Bhattacharya and Pradipta
Purkayastha are warmly thanked for some spectral
data. This work was supported by a grant-in-aid
[01(1705)/01/EMR-II] and research fellowships (to
S.K.S and N.P) from CSIR, New Delhi.
8. (a) de Meijere, A.; Meyer, F. E. Angew. Chem., Int. Ed.
Engl. 1994, 33, 2379; (b) Cabri, W.; Candiani, I. Acc.
Chem. Res. 1995, 28, 2; (c) Jeffery, T. In Advances in
Metal-Organic Chemistry; Liebeskind, L. S., Ed.; JAI
Press: Greenwich, CT, 1996; Vol. 5, p. 153; (d) Belet