LETTER
Deprotonation-Transmetallation of 4-Bromopyridine
809
References
Br
Br
Br
N
M
(1) Karig, G.; Spencer, J. A.; Gallagher, T. Org. Lett. 2001, 3,
835.
(2) (a) For comprehensive reviews on the metallation of
pyridines and diazines, see: Turck, A.; Plé, N.; Mongin, F.;
Quéguiner, G. Tetrahedron 2001, 57, 4489. (b) Mongin, F.;
Quéguiner, G. Tetrahedron 2001, 57, 4059.
(3) For other recent and related examples of Li-Zn
transmetallations, see: (a) Gros, P.; Fort, Y. Synthesis 1999,
754. (b) Kristensen, J.; Begtrup, M.; Vedsø, P. Synthesis
1998, 1604. (c) Felding, J.; Uhlmann, P.; Kristensen, J.;
Vedsø, P.; Begtrup, M. Synthesis 1998, 1181.
(4) (a) Gribble, G. W.; Saulnier, M. G. Heterocycles 1993, 35,
151. (b) See also: Numata, A.; Kondo, Y.; Sakamoto, T.
Synthesis 1999, 306.
Ar
iii
i
N
N
4
5 M=Li
7a Ar=C6H4-4-NO2 34%
7b Ar=C6H4-4-OMe 48%
7c Ar=3-pyridyl 34%
7d Ar=C6H5 53%
ii
(HCl salt)
6 M=ZnCl
CO2Et
Ar'
Br
Ar
Ar
Ar
N
iv or v
N
N
N
(5) All new compounds have been fully characterized by IR, 1H
and 13C NMR, and HRMS. Selected data are presented
below. It is noteworthy that the bromo moiety of 6 does not
participate in a ‘homocoupling’ process [i.e. a Pd(0)-
mediated dimerization of 6], and only the cross coupled
product 7 is observed. Furthermore, in addition to aryl
iodides, organozinc 6 has also been coupled successfully to
vinyl triflates.
8
7
9
OMe
NO2
Ph
N
Ph
N
N
8b 27%
8a 49%
8c 35%
N
(6) We used an excess (2.5 equiv as compared to the aryl iodide)
of 4-bromopyridine and yields are based on the aryl iodide
component. A solution of LDA [from diisopropylamine (1.4
mL, 10 mmol), n-BuLi (4 mL, 2.5 M in hexanes, 10 mmol)
in THF (5 mL)] was transferred to a solution of 4-bromo-
pyridine hydrochloride (970 mg, 5 mmol) in THF (5 mL) at
–78 °C and stirred for 30 min. Dry ZnCl2 (700 mg, 5 mmol)
in THF (5 mL) was added. A precipitate was formed and the
mixture was allowed to warm to room temperature. Aryl
iodide (2 mmol) and Pd(PPh3)4 (0.06 g, 0.05 mmol) were
added and the reaction mixture was heated to reflux for 3
hours. After cooling, sat. aq NH4Cl was added, and the
product was extracted with EtOAc, the extracts were washed
with water, dried (MgSO4), and evaporated under reduced
pressure. Purification by silica gel flash chromato-graphy
gave the 3-aryl-4-bromopyridines 7.
CO2Et
CO2Et
OMe
NO2
9a 56%
9b 61%
N
N
Scheme 2 Reagents: i, LDA (2.2. equiv), THF, –78 °C; ii, ZnCl2 (in
THF), –78 °C to r.t.; iii, ArX (X = I or Br), Pd(PPh3)4, THF, reflux;
iv, Suzuki: Ar B(OH)2, Pd(PPh3)4, Na2CO3, PhMe, EtOH, reflux; v,
Heck: CH2=CHCO2Et, Pd(OAc)2, NEt3, P(o-Tol)3, MeCN, reflux.
Br
Br
Br
Ph
M
Ph
Ar
Ph
i
iii
Selected data for 3-aryl-4-bromopyridines: 7a: mp 169 °C
(EtOAc–hexane); 1H NMR (300 MHz, CDCl3) 7.63 (2 H,
d, J = 8.8 Hz, CH2 ,6 ), 7.68 (1 H, d, J = 5.3 Hz, CH5), 8.36
(2 H, d, J = 8.9 Hz, CH3 ,5 ), 8.46 (1 H, d, J = 5.3 Hz, CH6),
8.53 (1 H, s, CH2). 7b: mp 60-62 °C (EtOAc–hexane); 1H
NMR (300 MHz, CDCl3) 3.87 (3 H, s, OCH3), 7.01 (2 H,
d, J = 8.8 Hz, CH3 ,5 ), 7.37 (2 H, d, J = 8.8 Hz, CH2 ,6 ),
7.61 (1 H, dd, J = 0.4, 5.3 Hz, CH5), 8.33 (1 H, d, J = 5.3 Hz,
CH6), 8.50 (1 H, s, CH2). 7c: mp 69–70 °C (EtOAc:hexane);
1H NMR (300 MHz, CDCl3) 7.43 (1 H, dd, J = 5.1, 7.9, Hz,
CH5 ), 7.67 (1 H, d, J = 5.3 Hz, CH5), 7.79 (1 H, d, J = 7.9
Hz, CH4 ), 8.44 (1 H, d, J = 5.2 Hz, CH6), 8.53 (1 H, s,
CH2), 8.70 (2 H, s, CH2 ,6 ). 7d: oil 1H NMR (300 MHz,
CDCl3) 7.44 (5 H, m, PhH), 7.61 (1 H, dd, J = 0.5, 5.3 Hz,
CH5), 8.33 (1 H, d, J = 5.3 Hz, CH6), 8.51 (1 H, s, CH2).
(7) LiTMP has found valuable application in the metallation of
diazines: (a) Mojovic, L.; Turck, A.; Plé, N.; Dorsy, M.;
Ndzi, B.; Quéguiner, G. Tetrahedron 1996, 52, 10417.
(b) Plé, N.; Turck, A.; Heynderickx, A.; Quéguiner, G.
Tetrahedron 1998, 54, 9701. (c) Turck, A.; Plé, N.;
Lepretre-Gaquere, A.; Quéguiner, G. Heterocycles 1998, 49,
205. (d) Also, LiTMP and zincate-based derivatives
influence the regiochemisty of the deprotonation of 2-
bromopyridines. See ref.1 and: Imahori, T.; Uchiyama, M.;
Sakamoto, T.; Kondo, Y. Chem. Commun. 2001, 2450.
N
N
N
10a Ar=C6H4-4-NO2 34%
10b Ar=Ph 44%
M=Li
7d
ii
M=ZnCl
Scheme 3 Reagents: i, LDA (1.1 equiv), THF, –78 °C; ii, ZnCl2 (in
THF), –78 °C to r.t.; iii, ArI (see text), Pd(PPh3)4, THF, reflux.
give a range of 3,4-disubstituted derivatives, com-
plementing the regiochemistry available for 3-bromo-
pyridine (compare 3 and 8). Furthermore, substitution at
both C(3) and C(5) can be accomplished in a stepwise
manner leading to more highly substituted pyridines, such
as 10.
Acknowledgement
We thank the Biomolecular Sciences Panel (BBSRC/EPSRC), and
NT thanks the Thailand Research Fund for award of a Royal Golden
Jubilee Scholarship through Professor Somsak Ruchirawat.
Synlett 2002, No. 5, 808–810 ISSN 0936-5214 © Thieme Stuttgart · New York