zolidinone or oxazolidinone group [Figure 1]. Our original
plan for accessing ynamides 2 via a facile base-induced
of ynamides 6. Ring-closing metathesis [RCM] is a powerful
tool in organic synthesis,10-16 and the new ynamides 6
represent intriguing substrates for enyne metathesis11,12
leading to useful nitrogen heterocycles.14 The enyne RCM
of C1-heteroatom substituted acetylenes were not known until
the elegant studies reported very recently by Kozmin,13 van
Boom,14 and Mori.15 We report here our first success in the
preparation of ynamides using based-promoted isomeriza-
tions as well as applications of these novel ynamides in the
first tandem diene-ynamide RCM. To examine based-
Scheme 1a
a (a) THF [0.1 M in concentration], 20 mol % of KOt-Bu, rt.
Figure 1.
isomerization of propargyl amides 1 was surprisingly derailed
and inadvertently led us to allenamides 3,9 although this is
a known protocol for synthesis of ynamine.1,7b While this
failure allowed us to study sparsely investigated allenamides
3,6 it also compelled us to access ynamides 2 via an
alternative, but less efficient, route involving dehydrohalo-
genations of Z-â-bromoenamides.9
promoted isomerizations, propargyl urethanes 7a,b and
propargyl amides 8a,b were prepared from 1-amino-2-
propyne via standard conditions consisting of N-alkylations
and N-acylations [Scheme 1].17 The ensuing isomerizations
of 7a,b and 8a,b were carried out using 20 mol % of KOt-
Bu/t-BuOH in THF at rt. Propargyl urethanes 7a,b behaved
exactly the same as propargyl amides 1 [substituted with an
Although other useful methods such as the use of alkynyl
iodonium triflate salts are known for synthesis of 1-sulfonyl
amido alkynes,1,3 a base-induced isomerization protocol
remains the most direct and convenient synthetic entry to
ynamides. The fundamental questions surrounding this
initially failed isomerization, and the need for a practical
entry to ynamides provoked us to investigate other propargyl
amides 4. We subsequently found success in the synthesis
(10) For recent reviews on metathesis, see: (a) Grubbs, R. H.; Miller,
S. J.; Fu, G. C. Acc. Chem. Res. 1995, 28, 446. (b) Shrock, R. R. Tetrahedron
1999, 55, 8141. (c) Fu¨rstner, A. Angew. Chem., Int. Ed. 2000, 39, 3012.
(h) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18. (d) Hoveyda,
A. H.; Schrock, R. R. Chem. Eur. J. 2001, 7, 945.
(11) For reviews on enyne RCM, see: (a) Mori, M. In Topics in
Organometallic Chemistry; Fu¨rstner, A., Ed.; Springer-Verlag: Berlin,
Heidelberg, 1998;Vol. 1, p 133. (b) Mori, M. J. Synth. Org. Chem. Jpn.
1998, 56, 115.
(12) For recent applications of enyne metathesis, see: (a) Clark, J. S.;
Hamelin, O. Angew. Chem., Int. Ed. 2000, 39, 372. (b) Fu¨rstner, A.; Szillat,
H.; Stelzer, F. J. Am. Chem. Soc. 2000, 122, 6785. (c) Stragies, R.;
Voigtmann, U.; Blechert, S. Tetrahedron Lett. 2000, 41, 5465. (d) Fu¨rstner,
A.; Ackermann, L.; Gabor, B.; Goddard, R.; Lehmann, C. W.; Mynott, R.;
Stelzer, F.; Thiel, O. R. Chem. Eur. J. 2001, 7, 3236. (e) Kitamura, T.;
Mori, M. Org. Lett. 2001, 3, 1161. (f) Mori, M.; Kitamura, T.; Sato, Y.
Synthesis 2001, 654.
(13) For silyl ynol ethers, see: (a) Schramm, M. P.; Reddy, D. S.;
Kozmin, S. A. Angew. Chem., Int. Ed. 2001, 40, 4274. For an earlier account
on sugar-substituted alkynol ethers, see: (b) Clark, J. S.; Hamelin, O. Angew.
Chem., Int. Ed. 2000, 39, 372.
(6) For our efforts in allenamides, see: (a) Rameshkumar, C.; Xiong,
H.; Tracey, M. R.; Berry, C. R.; Yao, L. J.; Hsung, R. P. J. Org. Chem.
2002, 67, 1339. (b) Xiong, H.; Hsung. R. P.; Berry, C. R.; Rameshkumar,
C. J. Am. Chem. Soc. 2001, 123, 7174. (c) Xiong, H.; Hsung, R. P.; Wei,
L.-L.; Berry, C. R.; Mulder, J. A.; Stockwell, B. Org. Lett. 2000, 2, 2869.
(d) Wei, L.-L.; Hsung, R. P.; Xiong, H.; Mulder, J. A.; Nkansah, N. T.
Org. Lett. 1999, 1, 2145. (e) Wei, L.-L.; Xiong, H.; Douglas, C. J.; Hsung,
R. P. Tetrahedron Lett. 1999, 40, 6903.
(7) For earlier ynamides, see: (a) Janousek, Z.; Collard, J.; Viehe, H.
G. Angew. Chem., Int. Ed. Engl. 1972, 11, 917. (b) Katritzky, A. R.; Ramer,
W. H. J. Org. Chem. 1985, 50, 852.
(8) For earlier allenamides, see: (a) Dickinson, W. B.; Lang, P. C.
Tetrahedron Lett. 1967, 3035. (b) Overman, L. E.; Marlowe, C. K.; Clizbe,
L. A. Tetrahedron Lett. 1979, 599. (c) Reisch, J.; Salehi-Artimani, R. A. J.
Heterocycl. Chem. 1989, 26, 1803.
(14) For phosphonamides, see: Timmer, M. S. M.; Ovaa, H.; Filippov,
D. V.; Van der Marel, G. A.; Van Boom, J. H. Tetrahedron Lett. 2001, 42,
8231.
(15) During our own studies, Mori communicated their elegant prelimi-
nary studies on enynamide metathesis, see: Saito, N.; Sato, Y.; Mori, M.
Org. Lett. 2002, 4, 803.
(9) Wei, L.-L.; Mulder, J. A.; Xiong, H.; Zificsak, C. A.; Douglas, C.
J.; Hsung, R. P. Tetrahedron 2001, 57, 459.
(16) Hoye, T. R.; Donaldson, S. M.; Vos, T. J. Org. Lett. 1999, 1, 277.
2418
Org. Lett., Vol. 4, No. 14, 2002