T. Kruse et al. / Inorganica Chimica Acta 331 (2002) 81–89
89
Found: C, 66.4; H, 7.2; S, 10.4%. EI-mass spectrum:
Acknowledgements
m/z=1224 [M]+.
We thank the Fonds der Chemischen Industrie for
financial support. Heike Schucht is thanked for skillful
help with the X-ray data collections.
3.1.3.4. [CuII(bsp)(py)2] (4). A solution of 3 (0.61 g; 0.5
mmol) and pyridine (0.08 g; 1.0 mmol) in dry CH2Cl2
(20 ml) was allowed to stand in an open vessel for 12 h.
Slow evaporation of the solvent yielded violet crystals
of 4 (0.19 g; 26%). C44H54CuN2O2S2 (770.6): Anal.
Calc.: C, 68.58; H, 7.06; S, 8.32. Found: C, 68.3; H, 7.0;
S, 8.5%. EI-mass spectrum: m/z=611 [M−2py]+.
References
[1] (a) N. Ito, S.E.V. Phillips, C. Stevens, Z.B. Orgel, M.J. McPher-
son, J.N. Keen, K.D.S. Yadav, P.F. Knowles, Nature (London)
350 (1991) 87;
3.2. X-ray crystallographic data collection and
refinement of the structures
(b) N. Ito, S.E.V. Phillips, K.D.S. Yadav, P.F. Knowles, J. Mol.
Biol. 238 (1994) 799.
[2] (a) M.M. Whittaker, Y.-Y. Chuang, J.W. Whittaker, J. Am.
Chem. Soc. 115 (1993) 10029;
Colorless single crystals of H2(bse), H2(bsb), and
H(psp), a brown crystal of 1, green–brown crystals of 2
and 3, and a red crystal of 4 were mounted on diffrac-
tometers equipped with a cryogenic nitrogen cold
stream operating at 100 K. Graphite monochromated
(b) M.M. Whittaker, W.R. Duncan, J.W. Whittaker, Inorg.
Chem. 35 (1996) 382;
(c) D. Zurita, C. Scheer, J.-L. Pierre, E. Saint-Aman, J. Chem.
Soc., Dalton Trans. (1996) 4331;
(d) D. Zurita, I. Gautier-Luneau, S. Me´nage, J.-L. Pierre, E.
Saint-Aman, J. Biol. Inorg. Chem. 2 (1997) 46;
(e) D. Zurita, S. Me´nage, J.-L. Pierre, E. Saint-Aman, New J.
Chem. 21 (1997) 1001;
(f) S. Itoh, S. Takayama, R. Arakawa, A. Furuta, M. Komatsu,
A. Ishida, S. Takamuku, S. Fukuzumi, Inorg. Chem. 36 (1997)
1407;
(g) M.A. Halcrow, L.M.L. Chia, X. Liu, E.J.L. McInnes, L.J.
Yellowlees, F.E. Mabbs, J.E. Davies, Chem. Commun. (1998)
2465;
(h) M.A. Halcrow, L.M.L. Chia, X. Liu, E.J.L. McInnes, L.J.
Yellowlees, F.E. Mabbs, I.J. Scowen, M. McPartlin, J.E. Davies,
J. Chem. Soc., Dalton Trans. (1999) 1753;
(i) J.A. Halfen, B.A. Jazdzewski, S. Mahapatra, L.M. Berreau,
E.C. Wilkinson, L. Que Jr., W.B. Tolman, J. Am. Chem. Soc.
119 (1997) 8217.
,
Mo Ka radiation (u=0.71073 A) was used. Crystallo-
graphic data of the compounds and diffractometer
types used are listed in Table 1. Final cell constants
were obtained from a least square fit of a subset of
several thousand intense reflections. Diffraction data
were collected taking frames at 0.3° (Siemens SMART)
and 0.5–1.0° (Nonius Kappa). Data were corrected for
Lp. Semi empirical absorption corrections for H2(bse),
H2(bsb) were carried out with the program SADABS [9].
Intensities of 2 were corrected for absorption using the
Gaussian face indexed method. The Siemens SHELXTL
[10] software package (Version 5) was used for solution,
refinement and artwork of the structures. All structures
were solved and refined by direct methods and differ-
ence Fourier techniques. Neutral atom scattering fac-
tors incorporated in the program were used. All
non-hydrogen atoms were refined anisotropically except
those in disordered parts of the molecules, which were
isotropically refined. Split atom models were used giv-
ing satisfactory models for the disorder; details are
given in the supplementary material. Hydrogen atoms
were geometrically attached and treated as riding atoms
with isotropic displacement parameters.
[3] (a) J.W. Whittaker, in: H. Sigel, A. Sigel (Eds.), Metalloenzymes
Involving Amino Acid-Residue and Related Radicals, vol. 30,
Marcel Dekker, New York, 1994, p. 315;
(b) G.A. Landum, C.A. Ekberg, J.W. Whittaker, Biophys. J. 69
(1995) 674;
(c) M.M. Whittaker, C.A. Ekberg, J. Peterson, M.S. Sendova,
E.P. Day, J.W. Whittaker, J. Mol. Cat. B: Enzymatic 8 (2000) 3.
[4] P. Chaudhuri, M. Hess, U. Flo¨rke, K. Wieghardt, Angew.
Chem., Int. Ed. 37 (1998) 2217.
[5] W.H. Mueller, M. Dines, J. Heterocycl. Chem. 6 (1969) 627.
[6] (a) S.K. Mandal, L.K. Thompson, K. Nag, J.-P. Charland, E.J.
Gobe, Can. J. Chem. 65 (1987) 2815;
(b) W. Mazurek, B.J. Kennedy, K.S. Murray, M.J. O’Connor,
J.R. Rodgers, M.R. Snow, A.G. Wedd, P.R. Zwack, Inorg.
Chem. 24 (1985) 3258;
(c) J. Glerup, D.J. Hodgson, E. Pedersen, Acta Chem. Scand.
A37 (1983) 161;
4. Supplementary material
(d) S. Kallasoe, E. Pedersen, Acta Chem. Scand. A36 (1982) 859;
(e) J. Bertrand, C.E. Kirkwood, Inorg. Chim. Acta 6 (1972) 248;
(f) A. Bensini, D. Gatteschi, Inorg. Chim. Acta 31 (1978) 11.
[7] (a) S. Itoh, M. Taki, S. Fukuzumi, Coord. Chem. Rev. 198
(2000) 3;
(b) Y. Shimazaki, S. Huth, S. Hirota, O. Yamauchi, Bull. Chem.
Soc. Jpn. 73 (2000) 1187.
[8] T. Kruse, PhD Dissertation, Ruhr Universita¨t Bochum, 2001.
[9] SADABS, G.M. Sheldrick, University of Go¨ttingen 1994.
[10] SHELXTL V.5, Siemens Analytical X-Ray Instruments, Inc. 1994.
Crystallographic data for H2(bse), H2(bsb), H(psp),
1, 2, 3, and 4 have been deposited with the Cambridge
Crystallographic Data Centre as supplementary publi-
cations no. CCDC 165316–165322. Copies of the data
can be obtained free of charge on application to
CCDC, 12 Union Road, Cambridge CB2 1EZ, UK