Scheme 1. Retrosynthesis of â-Turn Mimetics with General
Structure 1
Figure 2. Examples of synthesized cyclic tripeptides.
design was the use of substituted amide bonds in the
precursors in order to facilitate rotation and thereby cycliza-
tion.12 The presence of four substituents (Ri-Ri+3) in
principle provides ample opportunity for the generation of
diverse libraries. In 1 the H-bond of the 10-membered ring
of a natural â-turn is replaced by a â-peptoid residue,13
providing covalent control of the structure of the turn as well
as facilitating rotation around the amide bond.
The retrosynthesis of 1 is shown in Scheme 1. Our strategy
for creating the â-turn mimetics was to leave the central (i
+ 1 and i + 2) amino acids of the â-turn largely untouched
with respect to a naturally occurring â-turn. The two amide
substituents Ri and Ri+3 were introduced to facilitate rotation
around the tertiary peptide amide bonds. Moreover, they
provide additional diversity as pharmacophores in the
ultimate tripeptide â-turn mimic. Alternatively, one of the
substituents may be used as a resin attachment site. Ring
closure to 1 should take place in the final coupling step
involving two R-amino acid residues, which should give the
highest coupling efficiency. Nevertheless, because structure
1 is between a tri- and tetrapeptide in size, and therefore
considerably rigid, it was expected that cyclization would
be difficult.
corresponding tripeptidomimetic containing an amino sul-
fonamide will be reported shortly. Examples of cyclic tri-
and tetrapeptides consisting only of (L) amino acids are very
scarce10 and usually contain proline, an N-substituted amino
acid, or the very flexible amino acid glycine, which has no
side chain. The presence of proline or an N-substituted amino
acid is especially noteworthy, since this will facilitate rotation
around the amide bond from the trans- to the cis-rotamer.
This rotation is necessary for the nine-membered ring of the
cyclic tripeptide to form. Clearly, the presence of only trans-
rotamers of the peptide amide bond will hamper the
formation of a small cyclic peptide.11
We designed cyclic (R2â)-tripeptides of general structure
1 as mimics of â-turns (Scheme 1). A crucial feature of our
(6) (a) Eguchi, M.; Lee, M. S.; Nakanishi, H.; Stasiak, M.; Lovell, S.;
Kahn, M. J. Am. Chem. Soc. 1999, 121, 12204. (b) Kim, H.; Nakanishi,
H.; Lee, M. S.; Kahn, M. Org. Lett. 2000, 2, 301. (c) Eguchi, M.; Lee, M.
S.; Stasiak, M.; Kahn, M. Tetrahedron Lett. 2001, 42, 1237.
(7) (a) Golebiowski, A.; Klopfenstein, S. R.; Chen, J. J.; Shao, X.
Tetrahedron Lett. 2000, 41, 4841. (b) Golebiowski, A.; Klopfenstein, S.
R.; Shao, X.; Chen, J. J.; Colson, A.; Grieb, A. L.; Russell, A. F. Org. Lett.
2000, 2, 2615.
Cyclization precursor 2 should be readily accessible using
previously described chemistry. The â-peptoid residue in 2
can be assembled through Michael addition of a primary
amine to a resin-bound acrylate,14 while the N-alkyl sub-
stituent comprising the Ri side chain can be introduced using
(8) (a) Feng, Y.; Burgess, K. Chem. Eur. J. 1999, 5, 3261. (b) Feng, Y.;
Pattarawarapan, M.; Wang, Z.; Burgess, K. Org. Lett. 1999, 1, 121. (c)
Maliartchouk, S.; Feng, Y.; Ivanisevic, L.; Debeir, T.; Cuello, C.; Burgess,
K.; Saragovi, H. U. Mol. Pharmacol. 2000, 57, 385. (d) Zhang, A. J.; Khare,
S.; Gokulan, K.; Linthicum, D. S.; Burgess, K. Bioorg. Med. Chem. Lett.
2001, 11, 207.
(9) A corresponding tripeptidomimetic containing an amino sulfonamide
will be reported shortly.
(10) See, for example: (a) Schmidt, U.; Langner, J. J. Pept. Res. 1997,
49, 67. (b) Ehrlich, A.; Heyne, H. U.; Winter, R.; Beyermann, M.; Haber,
H.; Carpino, L. A.; Bienert, M. J. Org. Chem. 1996, 61, 8831. (c) Ma¨stle,
W.; Link, U.; Witschel, W.; Thewalt, U.; Weber, T.; Rothe, M. Biopolymers
1991, 31, 735. (d) Nishino, N.; Xu, M.; Maihara, H.; Fujimoto, T.
Tetrahedron Lett. 1992, 33, 1479.
(12) The favorable influence on cyclization by an N-substituted amide
containing a Boc-group was described in: Cavalier-Frontin, F.; Achmad,
S.; Verducci, J.; Jacquier, R.; Pe`pe, G. J. Mol. Struct. (THEOCHEM) 1993,
286, 125.
(13) Hamper, B. C.; Kolodziej, S. A.; Scates, A. M.; Smith, R. G.; Cortez,
E. J. Org. Chem. 1998, 63, 708.
(11) Scherer, G.; Kramer, M. L.; Schutkowski.; M. Reimer, U.; Fischer,
G. J. Am. Chem. Soc. 1998, 120, 5568.
(14) Brown, A. R.; Rees, D. C.; Rankovic, Z.; Morphy, J. R. J. Am.
Chem. Soc. 1997, 119, 3288
2174
Org. Lett., Vol. 4, No. 13, 2002