Organic Letters
Letter
(14) Ju, G. D.; Li, G. B.; Zhang, J. Y.; Zhao, Y. S. Rh(III)-Catalyzed
C−H Amidation of Arenes with N-Methoxyamide as an Amidating
Reagent. Org. Lett. 2019, 21, 7333−7336.
ACKNOWLEDGMENTS
■
This work was supported by the Natural Science Foundation
of China (Nos. 21772139, 21572149), Jiangsu Province
Natural Science Found for Distinguished Young Scholars
(BK20180041), Project of Scientific and Technologic Infra-
structure of Suzhou (SZS201708), and the PAPD Project.
(15) Ackermann, L. Carboxylate-AssistedTransition-Metal-Cata-
lyzed C-H Bond Functionalizations: Mechanism and Scope. Chem.
Rev. 2011, 111, 1315−1345.
(16) Czernielewski, J.; Michel, S.; Bouclier, M.; Baker, M.; Hensby,
C. Adapalene biochemistry and the evolution of a new topical retinoid
for treatment of acne. J. Eur. Acad. Dermatol. Venereol. 2001, 15, 5−12.
(17) Karijolich, J.; Yu, Y.-T. Therapeutic suppression of premature
termination codons: Mechanisms and clinical considerations (Re-
view). Int. J. Mol. Med. 2014, 34, 355−362.
(18) Moraillon, A.; Gouget-Laemmel, A. C.; Ozanam, F.; Chazalviel,
J.-N. Amidation of Monolayers on Silicon in Physiological Buffers: A
Quantitative IR Study. J. Phys. Chem. C 2008, 112, 7158−7167.
(19) Ralston, A. W.; Hoerr, C. W. The Solubilities of The Normal
Saturated Fatty Acids. J. Org. Chem. 1942, 07, 546−555.
REFERENCES
■
(1) (a) Yu, J. Q., Shi, Z. J., Eds. C−H Activation; Topics in Current
Chemistry; Springer: 2010; Vol. 292. (b) Li, J. J. C−H bond activation
in organic synthesis; CRC Press: 2017.
(2) Postigo, A. Late-Stage Fluorination of Bioactive Molecules and
Biologically-Relevant Substrates; Elsevier: 2019.
(3) (a) Nagib, D. A.; MacMillan, D. W. C. Trifluoromethylation of
arenes and heteroarenes by means of photoredox catalysis. Nature
2011, 480, 224−228. (b) Xu, J.; Fu, Y.; Luo, D.-F.; Jiang, Y.-Y.; Xiao,
B.; Liu, Z.-J.; Liu, L. Copper-Catalyzed Trifluoromethylation of
Terminal Alkenes through Allylic C-H Bond Activation. J. Am. Chem.
Soc. 2011, 133, 15300−15303.
(4) (a) Ruan, Z. X.; Zhang, S.-K.; Zhu, C. J.; Ruth, P. N.; Stalke, D.;
Ackermann, L. Ruthenium(II)-Catalyzed meta C−H Mono-and
Difluoromethylations by Phosphine/Carboxylate Cooperation.
Angew. Chem., Int. Ed. 2017, 56, 2045−2049. (b) Yuan, C. C.; Zhu,
L.; Chen, C. P.; Chen, X. L.; Yang, Y.; Lan, Y.; Zhao, Y. S.
Ruthenium(II)-enabled para-selective C−H difluoromethylation of
anilides and their derivatives. Nat. Commun. 2018, 9, 1189.
(5) Zhao, D.; Xu, P.; Ritter, T. Palladium-Catalyzed Late-Stage
Direct Arene Cyanation. Chem. 2019, 5, 97.
(6) (a) Dai, H.-X.; Stepan, A. F.; Plummer, M. S.; Zhang, Y.-H.; Yu,
J.-Q. Divergent C−H Functionalizations Directed by Sulfonamide
Pharmacophores: Late-Stage Diversification as a Tool for Drug
Discovery. J. Am. Chem. Soc. 2011, 133, 7222−7228. (b) DiRocco, D.
A.; Dykstra, K.; Krska, S.; Vachal, P.; Conway, D. V.; Tudge, M. Late-
Stage Functionalization of Biologically Active Heterocycles Through
Photoredox Catalysis. Angew. Chem., Int. Ed. 2014, 53, 4802−4806.
(7) Ricci, A. Amino Group Chemistry, From Synthesis to the Life
Sciences; Wiley-VCH: Weinheim, 2007.
(20) Hohlfeld, J. M.; Schoenfeld, K.; Lavae-Mokhtari, M. L.;
Schaumann, F.; Mueller, M.; Bredenbroeker, D.; Krug, N.; Hermann,
R. Roflumilast attenuates pulmonary inflammation upon segmental
endotoxin challenge in healthy subjects: A randomized placebo-
controlled trial. Pulm. Pharmacol. Ther. 2008, 21, 616−623.
(21) (a) Gundersen, L.-L.; Nissen-Meyer, J.; Spilsberg, B. Synthesis
and Antimycobacterial Activity of 6-Arylpurines: The Requirements
for the N-9 Substituent in Active Antimycobacterial Purines. J. Med.
Chem. 2002, 45, 1383−1386. (b) Bakkestuen, A. K.; Gundersen, L.-
L.; Utenova, B. T. Synthesis, Biological Activity, and SAR of
Antimycobacterial 9-Aryl-, 9-Arylsulfonyl-, and 9-Benzyl-6-(2-furyl)
purines. J. Med. Chem. 2005, 48, 2710−2723.
̌
(22) Hocek, M.; Naus, P.; Pohl, R.; Votruba, I.; Furman, P. A.;
Tharnish, P. M.; Otto, M. J. Cytostatic 6-Arylpurine Nucleosides. 6.†
SAR in Anti-HCV and Cytostatic Activity of Extended Series of 6-
Hetarylpurine Ribonucleosides. J. Med. Chem. 2005, 48, 5869.
́
̌
́
́
(23) Hocek, M.; Holy, A.; Votruba, I.; Dvorakova, H. Synthesis and
Cytostatic Activity of Substituted 6-Phenylpurine Bases and Nucleo-
sides: Application of the Suzuki-Miyaura Cross-Coupling Reactions of
6-Chloropurine Derivatives with Phenylboronic Acids. J. Med. Chem.
2000, 43, 1817.
(24) McCormack, P. L. Celecoxib: a review of its use for
symptomatic relief in the treatment of osteoarthritis, rheumatoid
arthritis and ankylosing spondylitis. Drugs 2011, 71, 2457−89.
(25) Miyaji, Y.; Sakai, N.; Tomogane, Y. Effect of Edaravone on
Favorable Outcome in Patients with Acute Cerebral Large Vessel
Occlusion: Subanalysis of RESCUE-Japan Registry. Neurol Med. Chir
(Tokyo). 2015, 55, 241−247.
(26) (a) Yang, Y.-F.; Houk, K. N.; Wu, Y.-D. Computational
Exploration of Rh(III)/Rh(V) and Rh(III)/Rh(I) Catalysis in
Rhodium(III)-Catalyzed C−H Activation Reactions of N-Phenox-
yacetamides with Alkynes. J. Am. Chem. Soc. 2016, 138, 6861−6868.
(b) Park, Y.; Park, K. T.; Kim, J. G.; Chang, S. Mechanistic Studies on
the Rh(III)-Mediated Amido Transfer Process Leading to Robust C−
H Amination with a New Type of Amidating Reagent. J. Am. Chem.
Soc. 2015, 137, 4534−4542. (c) Patel, P.; Chang, S. N-Substituted
Hydroxylamines as Synthetically Versatile Amino Sources in the
Iridium-Catalyzed Mild C−H Amidation Reaction. Org. Lett. 2014,
16, 3328−3331.
(8) Galloway, W. R. J. D.; Isidro-Llobet, A.; Spring, D. R. Diversity-
oriented synthesis as a tool for the discovery of novel biologically
active small molecules. Nat. Commun. 2010, 1, 80.
(9) (a) Ruiz-Castillo, P. R.; Buchwald, S. L. Applications of
Palladium-Catalyzed C−N Cross-Coupling Reactions. Chem. Rev.
2016, 116, 12564−12649. (b) Hartwig, J. F. Evolution of a Fourth
Generation Catalyst for the Amination and Thioetherification of Aryl
Halides. Acc. Chem. Res. 2008, 41, 1534−1544. (c) Bhunia, S.; Pawar,
G. G.; Kumar, S. V.; Jiang, Y. W.; Ma, D. W. Selected Copper-Based
Reactions for C−N, C−O, C−S, and C−C Bond Formation. Angew.
Chem., Int. Ed. 2017, 56, 16136−16179.
(10) (a) Park, Y.; Kim, Y.; Chang, S. Transition Metal-Catalyzed C−
H Amination: Scope, Mechanism, and Applications. Chem. Rev. 2017,
117, 9247−9301. (b) Louillat, M.-L.; Patureau, F. W. Oxidative C−H
amination reactions. Chem. Soc. Rev. 2014, 43, 901−910. (c) Wasa,
M.; Yu, J.-Q. Synthesis of -, γ-, and δ-Lactams via Pd(II)−Catalyzed
C-H Activation Reactions. J. Am. Chem. Soc. 2008, 130, 14058−
14059.
(11) Kawano, T.; Hirano, K.; Satoh, T.; Miura, M. A New Entry of
Amination Reagents for Heteroaromatic C−H Bonds: Copper-
Catalyzed Direct Amination of Azoles with Chloroamines at Room
Temperature. J. Am. Chem. Soc. 2010, 132, 6900−6901.
(12) Shin, K.; Kim, H.; Chang, S. Transition-Metal-Catalyzed C−N
Bond Forming Reactions Using Organic Azides as the Nitrogen
Source: A Journey for the Mild and Versatile C−H Amination. Acc.
Chem. Res. 2015, 48, 1040−1052.
(13) (a) Yoo, E. J.; Ma, S.; Mei, T.-S.; Chan, K. S. L.; Yu, J.-Q. Pd-
Catalyzed Intermolecular C−H Amination with Alkylamines. J. Am.
Chem. Soc. 2011, 133, 7652−7655. (b) Ng, K.-H.; Chan, A. S. C.; Yu,
W.-Y. Pd-Catalyzed Intermolecular ortho-C−H Amidation of Anilides
by N-Nosyloxycarbamate. J. Am. Chem. Soc. 2010, 132, 12862−12864.
D
Org. Lett. XXXX, XXX, XXX−XXX