Z. Wei et al. / Bioorg. Med. Chem. Lett. 22 (2012) 3884–3889
3889
12. Ashton, J.; Milligan, E. D. Curr. Opin. Investig. Drugs 2008, 9, 65.
13. Turcotte, D.; Le Dorze, J.-A.; Esfahani, F.; Frost, E.; Gomori, A.; Namka, M. Expert
Opin. Pharmacother. 2010, 11, 17.
14. Talwar, R.; Potluri, V. K. CNS Neurolog. Disord. Drug Targets 2011, 10, 536.
15. Karst, M.; Wippermann, S.; Ahrens, J. Drugs 2010, 70, 2409.
16. Burns, T. L.; Ineck, J. R. Ann. Pharmacother. 2006, 40, 251.
17. Sellito, I.; Le Bourdonnec, B.; Worm, K.; Goodman, A.; Savolainen, M. A.; Chu,
G.-H.; Ajello, C. W.; Saeui, C. T.; Leister, L. K.; Cassel, J. A.; DeHaven, R. N.;
LaBuda, C. J.; Koblish, M.; Little, P. J.; Brogdon, B. L.; Smith, S. A.; Dolle, R. E.
Bioorg. Med. Chem. Lett. 2010, 20, 387.
18. Gleave, R. J.; Beswick, P. J.; Brown, A. J.; Giblin, G. M. P.; Goldsmith, P.; Haslam,
C. P.; Mitchell, W. L.; Nicholson, N. H.; Page, L. W.; Patel, S.; Roomans, S.;
Slingsby, B. P.; Swarbrick, M. E. Bioorg. Med. Chem. Lett. 2010, 20, 465.
19. Malan, T. P., Jr.; Ibrahim, M. M.; Lai, J.; Vanderah, T. W.; Makriyannis, A.;
Porreca, F. Curr. Opin. Pharmacol. 2003, 3, 62.
20. Quartiho, A.; Mata, H. P.; Ibrahim, M. M.; Vanderah, T. W.; Porreca, F.;
Makriyannis, A.; Malan, T. P., Jr. Anesthesiology 2003, 99, 955.
21. Kelly, S.; Jhaveri, M. D.; Sagar, D. R.; Kendall, D. A.; Chapman, V. Eur. J. Neurosci.
2003, 18, 2239.
22. Fride, E.; Feigin, C.; Ponde, D. E.; Breuer, A.; Hanus, L.; Arshavsky, N.;
Mechoulam, R. Eur. J. Pharmacol. 2004, 506, 179.
23. Dyson, A.; Peacock, M.; Chen, B.; Courade, J.-P.; Yaqoob, M.; Groarke, A.; Brain,
C.; Loong, Y.; Fox, A. Pain 2005, 116, 129.
24. Richardson, J. D.; Kilo, S.; Hargreaves, K. M. Pain 1998, 75, 111.
25. Adam, J. M.; Clark, J. K.; Davies, K.; Everett, K.; Fields, R.; Francis, S.; Jeremiah,
F.; Kiyoi, T.; Maidment, M.; Morrison, A.; Ratcliff, P.; Prosser, A.; Schulz, J.;
Wishart, G.; Baker, J.; Boyce, S.; Campbell, R.; Cottney, J. E.; Deehan, M.; Martin,
I. Bioorg. Med. Chem. Lett. 2012, 22, 2932.
26. Odan, M.; Ishizuka, N.; Hiramatsu, Y.; Inagaki, M.; Hashizume, H.; Fujii, Y.;
Mitsumori, S.; Morioka, Y.; Soga, M.; Deguchi, M.; Yasui, K.; Arimura, A. Bioorg.
Med. Chem. Lett. 2012, 22, 2894.
2.38–2.47 (m, 1H) 2.64–2.73 (m, 1H) 2.77–2.85 (m, 1H) 2.90 (dd, J = 16.02,
2.73 Hz, 1H) 3.42 (t, J = 11.72 Hz, 2H) 3.64 (s, 3H) 3.93 (s, 3H) 4.04 (dd,
J = 10.94, 3.52 Hz, 2H) 7.24 (d, J = 8.59Hz, 1H) 7.86 (dd, J = 8.59, 1.56 Hz, 1H)
8.23 (d, J = 1.17 Hz, 1H); [M+H]+ = 328.22; k0 = 3.20 (Chiral HPLC ChiralPakÒ AD,
40% ethanol/60% hexane). Compound (R)-21: 1H NMR (400 MHz, METHANOL-
D4) d ppm 1.37–1.50 (m, 2H) 1.52–1.61 (m, 3H) 1.77 (t, J = 12.70 Hz, 2H) 1.86
(s, 1H) 1.96 (s, 2H) 2.13–2.20 (m, 1H) 2.26 (s, 1H) 2.34–2.44 (m, 1H) 2.49 (s, 1H)
2.64–2.73 (m, 2H) 2.79–2.90 (m, 2H) 3.04 (s, 3H) 3.36–3.47 (m, 3H) 3.55 (s, 1H)
3.63 (s, 3H) 3.98 (dd, J = 10.94, 3.52 Hz, 2H) 7.13 (s, 1H) 7.31 (d, J = 8.20 Hz, 1H)
7.46 (s, 1H); [M+H]+ = 426.2; k0 = 3.20. (Chiral HPLC ChiralPakÒ AD, 40%
ethanol/60% hexane). Compound (S)-21: 1H NMR (400 MHz, METHANOL-D4) d
ppm 1.38–1.50 (m, 2H) 1.53–1.60 (m, 3H) 1.78 (t, J = 12.30 Hz, 2H) 1.85 (s, 1H)
1.96 (s, 2H) 2.13–2.20 (m, 1H) 2.26 (s, 1H) 2.39 (dd, J = 16.21, 6.84 Hz, 1H) 2.49
(s, 1H) 2.65–2.74 (m, 2H) 2.80–2.89 (m, 2H) 3.04 (s, 3H) 3.37–3.47 (m, 3H) 3.55
(s, 1H) 3.63 (s, 3H) 3.98 (dd, J = 11.33, 3.91 Hz, 2H) 7.12 (s, 1H) 7.31 (d,
J = 8.59 Hz, 1H) 7.46 (s, 1H); [M+H]+ = 426.2; k0 = 4.79 (Chiral HPLC ChiralPakÒ
AD, 40% ethanol/60% hexane).
32. A Monte Carlo molecular mechanics search of low energy conformers for the R
configuration of 13 was conducted using MacroModel within the Maestro
graphical interface (Schrödinger Inc.). The 16 lowest energy conformers
identified were used as starting points and minimized using density
functional theory (DFT) within Gaussian 03. Simulations of infrared and VCD
spectra for each conformer were generated using an in-house written program
to fit Lorentzian line shapes (10 cm-1 line width) to the computed spectra. In
this manner, direct comparisons between simulated and experimental spectra
were made.
33. Ki values were measured by displacement of the agonist 3H-CP55,940 binding
on membranes of Human Embryonic Kidney (HEK) 293s stable cell lines
transfected with the cloned human CB1 receptor. EC50 were measured by
GTPc
35S binding on membranes of Human Embryonic Kidney (HEK) 293 EBNA
stable cell line transfected with the cloned human CB1 receptor using
WIN55,212–2 (compound 2) as the reference agonist for Emax calculations.
34. Lessard, E.; Schroeder, P.; Ellis, A.; Yu, X. H.; Ducharme, J. Abstracts: Clinical
Pharmacology and Therapeutics IXth World Congress 2008 Can. J. Clin.
Pharmacol. 2008, 15(3), e550.
27. Rukwied, R.; Watkinson, A.; McGlone, F.; Dvorak, M. Pain 2003, 102, 283.
28. Salim, K.; Schneider, U.; Burstein, S.; Hoy, L.; Karst, M. Neuropharmacology
2005, 48, 1164.
29. Dziadulewicz, E. K.; Bevan, S. J.; Brain, C. T.; Coote, P. R.; Culshaw, A. J.; Davis, A.
J.; Edwards, L. J.; Fisher, A. J.; Fox, A. J.; Gentry, C.; Groarke, A.; Hart, T. W.;
Huber, W.; James, I. F.; Kesingland, A.; Vecchia, L. L.; Loong, Y.; Lyothier, I.;
McNair, K.; O’Farrell, C.; Peacock, M.; Portmann, R.; Schopfer, U.; Yaqoob, M.;
Zadrobilek, J. J. Med. Chem. 2007, 50, 3851.
35. Austin, R. P.; Barton, P.; Cockroft, S. L.; Wenlock, M. C.; Riley, R. J. Drug Metab.
Dispos. 2002, 30, 1497.
36. This study was conducted under a protocol that has been approved by an
ethical committee. The animals were kept and experiments were performed at
our main site (AZRDM: AstraZeneca R&D Montreal) or at a site which has
accreditation from: CCAC (Canadian Council on Animal Care), AAALAC
(Association for the Assessment and Accreditation of Laboratory Animal
Care) and/or approved by AZGVC (AstraZeneca Global Veterinary Council) for
study conduct.
37. The determination of the total plasma or brain concentration of (R)-21 was
performed by protein precipitation (after homogenization of brain samples),
followed by reversed-phase liquid chromatography and electrospray mass
spectrometry. Twenty microliters of biological samples from the CNS
experiments (plasma and brain) and blank matrix(ces) are added manually
30. Cheng, Y.-X.; Pourashraf, M.; Luo, X.; Srivastava, S.; Walpole, C.; Salois, D.; St-
Onge, S.; Payza, K.; Lessard, E.; Yu, X. H.; Tomaszewski, M. Bioorg. Med. Chem.
Lett. 2012, 22, 1619.
31. All products gave satisfactory analytical characterization showing purity >95%
as determined by HPLC using a Zorbax C-18 column (k = 215, 254 and 280 nm).
1H NMR spectra were obtained from
a
400 MHz Varian Unity Plus
spectrometer. Mass spectra were obtained on a Micromass Quattro micro API
or an Agilent 1100 Series LC/MSD instrument using loop injection. Selected
analytical characterizations; Compound 5 (AZ599): 1H NMR (METHANOL-D4) d
ppm 0.89 (d, J = 6.40 Hz, 3 H), 0.59–1.09 (m, 2H), 1.13 (t, J = 7.42 Hz, 3H), 1.47–
1.76 (m, 3H), 1.77–1.89 (m, 2H), 2.08 (d, J = 12.29 Hz, 2H), 2.70–2.83 (m, 1H),
2.96–3.08 (m, 1H), 3.29–3.47 (m, 5H), 3.42 (q, J = 7.25 Hz, 2H), 3.55–3.70 (m,
2H), 3.85–4.00 (m, 1H), 4.03 (dd, J = 11.65, 4.48 Hz, 2H), 4.34–4.70 (m, 3H),
7.32 (d, J = 8.70 Hz, 1H), 7.56 (s, 1H), 7.95 (d, J = 8.45 Hz, 1H); [M+H]+ 474.0;
Compound (R)-13: 1H NMR (CHLOROFORM-D) d ppm 1.42–1.50 (m, 1H) 1.50–
1.57 (m, 2H) 1.58–1.67 (m, 2H) 1.76 (d, J = 11.72 Hz, 2H) 2.12–2.18 (m, 1H)
into a 96 well plate. All the in vivo samples are precipitated by adding 60 lL of
ACN+. The plate is carefully capped, vortexed and centrifuged at 9000g for
30 min at 4 °C. The samples are then ready to be analyzed by LC-MS/MS. After
preparing an analytical standard in ACN+, serial dilutions are carried out in
order to prepare a calibration curve. The range of the calibration curve is 1.22
to 1000.