Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C8CC03109F
COMMUNICATION
Journal Name
F
F
Pd/POL-xantphos (2 mol%)
4
(a) C. Wang, L. Wang, J. Zhang, H. Wang, J. P. Lewis and F.-S.
Xiao, J. Am. Chem. Soc., 2016, 138, 7880-7883; (b) L. R.
Baker, G. Kennedy, M. V. Spronsen, A. Hervier, X. Cai, S.
Chen, L.-W. Wang and G. A. Somorjai, J. Am. Chem. Soc.,
2012, 134, 14208-14216; (c) E. L. Kunkes, D. A. Simonetti, R.
M. West, J. C. Serrano-Ruiz, C. A. Gärtner and J. A. Dumesic,
Science, 2008, 322, 417-421; (d) S. Wang, V. Vorotnikov and
K2CO3 (1 equiv)
1,4-dioxane, 140 oC, 8 h
(1)
CHO
4a
4b
, 72%
Br
CHO
CHO
Pd/POL-xantphos (2 mol%)
K2CO3 (1 equiv)
1,4-dioxane, 140 o
(2)
C
OHC
CHO
4c
4d
4e
4f
4f
4d
Time
4e
6 h
6%
73%
17%
1%<
19%
51%
1%<
D. G. Vlachos, ACS Catal., 2015, 5, 104-112; (e) M.-Y. Chen,
12 h
48 h
22%
68%
C.-B. Chen, B. Zada and Y. Fu, Green Chem., 2016, 18, 3858-
3866; (f) J. Luo, H. S. Yun, A. V. Mironenko, K. Goulas, J. D.
Lee, M. Monai, C. Wang, V. Vorotnikov, C. B. Murray, D. G.
Vlachos, P. Fornasiero and R. J. Gorte, ACS Catal., 2016, 6,
4095-4104; (g) Y. Yang, Z. Du, Y. Huang, F. Lu, F. Wang, J. Gao
and J. Xu, Green Chem., 2013, 15, 1932-1940.
1) Pd/POL-xantphos (2 mol%)
K2CO3 (1 equiv)
100 oC, 8 h
2) 140 oC, 4 h
O
CHO
Br
(3)
4h, 75%
4g
5
6
(a) P. Gallezot, Chem. Soc. Rev., 2012, 41, 1538-1558; (b) S.
H. Pang, C. A. Schoenbaum, D. K. Schwartz and J. W. Medlin,
ACS Catal., 2014, 4, 3123-3131.
(a) Y. Roman-Leshkov, J. N. Chheda and J. A. Dumesic,
Science, 2006, 312, 1933-1937; (b) H. B. Zhao, J. E. Holladay,
H. Brown and Z. C. Zhang, Science, 2007, 316, 1597-1600; (c)
T. Wang, M. W. Nolte and B. H. Shanks, Green Chem., 2014,
16, 548-572.
Scheme 3. The applications of Pd NPs/POL-xantphos in decarbonylation of 4-
halobenzaldehydes.
Moreover, some special substrates could be converted into
interesting products using this nanocatalyst. For example,
when we used 4-halobenzaldehydes as the raw materials, fluo-
robenzaldehyde 4a can be decarbonylated to fluorobenzene
4b (Scheme 3, eq 1). But when we used 4-bromobenzaldehyde
4c as the substrate, we found that [1,1'-biphenyl]-4,4'-
7
8
L.D. Lillwitz, US4089871 (A), 1973.
(a) F. M. A. Geilen, T. V. Stein, B. Engendahl, S. Winterle, M.
A. Liauw, J. Klankermayer and W. Leitner, Angew. Chem. Int.
Ed., 2011, 50, 6831-6834; (b) J. Dai, X. Fu, L. Zhu, J. Tang, X.
dicarbaldehyde 4f
, [1,1'-biphenyl]-4-carbaldehyde 4e, and
biphenyl 4d can be obtained. And the yields of the products
were dependent on the reaction time (Scheme 3, eq 2).
Another interesting finding is that the amount of produced 9-
fluorenone 4h was more than that of decarbonylated product
when we used 2-bromobenzaldehyde 4g as a substrate in
standard conditions in one step (Scheme 3, eq 3). And this is
the first time that 9-fluorenone 4h was synthesized through
the Pd-catalyzed dimerization of 2-bromobenzaldehyde.
In summary, we have developed a highly chemoselective
and efficient method for decarbonylation of aldehydes with a
novel recyclable and highly stable heterogeneous
nanocatalyst. To study their structure-reactivity relationships,
the prepared POL-xantphos and Pd NPs/POL-xantphos were
fully character-rized. TEM images show that the Pd NPs are
highly discretely distributed in this porous polymer, which
results in the high activity of this nanocatalyst. More
importantly, this nanocatalyst can be reused in the
decarbonylation of HMF, which makes upgrading of this
significant biomass into biofuels possible for industrial
application.
Guo and C. Hu, ChemCatChem, 2016, 8, 1379-1385; (c) J.
Mitra, X. Zhou and T. Rauchfuss, Green Chem., 2015, 17, 307-
313; (d) Q. Meng,; C. Qiu, G. Ding, J. Cui, Y. Zhu and Y. Li,
Catal. Sci. Technol., 2016,
Yang, M.-Y. Chen, J.-J. Dai, Q.-X. Guo and Y. Fu,
ChemSusChem, 2013, , 1348-1351; (f) M. Chatterjee, T.
6, 4377-4388; (e) Y.-B. Huang, Z.
6
Ishizaka, A. Chatterjeeb and H. Kawanami, Green Chem.,
2017, 19, 1315-1326.
9
(a) Y.-B. Zhou, Y.-Q. Wang, L.-C. Ning, Z.-C. Ding, W.-L. Wang,
C.-K. Ding, R.-H. Li, J.-J. Chen, X. Lu, Y.-J. Ding and Z.-P. Zhan,
J. Am. Chem. Soc., 2017, 139, 3966-3969; (b) S. Lin, C. S.
Diercks, Y.-B. Zhang, N. Kornienko, E. M. Nichols, Y. Zhao, A.
R. Paris, D. Kim, P. Yang, O. M. Yaghi and C. J. Chang, Science,
2015, 349, 1208-1213; (c) L. Chen, Y. Yang, Z. Guo and D.
Jiang, Adv. Mater., 2011, 23, 3149-3154; (d) B. Li, Z. Guan, W.
Wang, X. Yang, J. Hu, B. Tan and T. Li, Adv. Mater. 2012, 24
,
3390-3395; (e) T. T. Adint and C. R. Landis, J. Am. Chem. Soc.,
2014, 136, 7943-7953.
10 (a) P. Bhanja, S. Chatterjee and A. Bhaumik, ChemCatChem.,
2016, , 3089-3098; (b) P. Bhanja, R. Gomes and A. Bhaumik,
RSC Adv., 2015, , 74916-74923.
8
5
11 (a) Q. Sun, Z. Dai, X. Meng and F.-S. Xiao, Chem. Soc. Rev.,
2015, 44, 6018-6034; (b) Q. Sun, Z. Dai, X. Meng, L. Wang
and F.-S. Xiao, ACS Catal., 2015, 5, 4556-4567.
We thank the National Natural Science Foundation of China
(21362002), Guangxi Natural Science Foundation of China
(2016GXNSFEA380001 and 2016GXNSFGA380005) and State
Key Laboratory for Chemistry and Molecular Engineering of
Medicinal Resources (CMEMR2017-A02 and CMEMR2017-A07)
for financial supports.
12 (a) W. Tong, W.-H. Li, Y. He, Z.-Y. Mo, H.-T. Tang, H.-S. Wang
and Y.-M. Pan, Org. Lett., DOI: 10.1021/acs.orglett.8b00886;
(b) Q. Sun, Z. Dai, X. Liu, N. Sheng, F. Deng, X. Meng and F.-S.
Xiao, J. Am. Chem. Soc., 2015, 137, 5204-5209; (c) C. Li,; K.
Sun, W. Wang, L. Yan, Y. Sun, Y. Wang, K. Xiong, Z. Zhan, Z.
Jiang and Y. Ding, J. Catal., 2017, 353, 123-132; (d) C. Li, L.
Yan, L. Lu, K. Xiong, W. Wang, M. Jiang, J. Liu, X. Song, Z.
Zhan, Z. Jiang and Y. Ding, Green Chem., 2016, 18, 2995-
3005; (e) R. Cai, X. Ye, Q. Sun, Q. He, Y. He, S. Ma and X. Shi,
Notes and references
1
(a) R. A. Kerr and R. F. Servise, Science, 2005, 309, 78-102; (b)
A. Corma, S. Lborra and A. Velty, Chem. Rev., 2007, 107
ACS Catal., 2017,
Wang, M. Jiang and Y. Ding, ACS Catal., 2016,
7, 1087-1092; (f) W. Wang, C. Li, L. Yan, Y.
6, 6091-6100;
,
2411-2502; (c) G. W. Huber, J. N. Chheda, C. J. Barret and J.
A. Dumesic, Science, 2005, 308, 1446-1450.
(g) Y.-B. Zhou, C.-Y. Li, M. Lin, Y.-J. Ding and Z.-P. Zhan, Adv.
Synth. Catal., 2015, 357, 2503-2508; (h) Z.-C. Ding, C.-Y. Li, J.-
J. Chen, J.-H. Zeng, H.-T. Tang, Y.-J. Ding and Z.-P. Zhan, Adv.
Synth. Catal., 2017, 359, 2280-2287.
2
3
C. Li, X. Zhao, A. Wang, G. W. Huber and T. Zhang, Chem.
Rev., 2015, 115, 11559-11624.
(a) G. W. Huber, S. Iborra and A. Corma, Chem. Rev., 2016,
106, 4044-4098; (b) C. Li, X. Zhao, A. Wang, G. W. Huber and
T. Zhang, Chem. Rev. 2015, 115, 11559-11624.
13 General procedures for the synthesis of POL-xantphos and
Pd NPs/POL-xantphos are depicted in supporting information
(Experimental Section).
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins