A R T I C L E S
Curran et al.
establish the absolute configuration. By using similar methods,
the structure of murisolin was refined to 1.147b and the structure
of murisolin A was narrowed to two candidates, 1.10 and 1.13.
These compounds show potent (sometimes extremely potent)
cytotoxic activities against several human cancer cell lines and
act by inhibition of complex I (NADH/ubiquinone oxidoreduc-
tase) in mitochondrial electron transport systems.3,7,8
Commensurate with the structural and biological interest,
there has been much synthetic work directed toward members
of both the mono-THF and bis-THF classes of acetogenins.3,9
Among others, the approaches of Sinha10 and Tanaka11 are well
designed for flexibility in stereoisomer synthesis. Through an
efficient plan that diverges from common intermediates as late
as possible to minimize work, the Sinha group has synthesized
36 isomers of a bis-THF-lactone that are suitably functionalized
to make all 64 isomers of the bis-dihydroxy-THF fragment of
these acetogenins.10 But the inexorable consequences of diver-
gence catch up sooner or later; many reactions will be needed
to convert the 36 intermediates in a serial or parallel fashion to
the 64 possible acetogenin products.
Roughly concurrent with our initial report1 of the synthesis
of a 16-member library including all the proposed structures of
the murisolins, Tanaka reported the synthesis of murisolin.12a
More recently, he has also described the synthesis of the
assigned structure of 16,19-cis-murisolin.12b
Figure 2. Structures of the (4R,34S)-murisolin family of acetogenins with
CIP designations of configurations for C15,16,19,20.
We have recently introduced solution phase mixture synthesis
with separation tagging as a means to leverage individual, serial,
and parallel syntheses of organic molecules. In the first approach
called “fluorous mixture synthesis” (FMS),13,14 incrementally
larger fluorous tags (Rf ) -(CF2)nCF3) were used to encode
either configuration or substituent information.15 This tagging
allows syntheses to be conducted on mixtures yet still provides
individual pure compounds of unambiguous structure in the end
because the mixtures can be separated (and hence decoded) by
But assigning stereostructures in acetogenins can be difficult,
and to date there are very few X-ray crystal structures reported
for these waxy compounds.3d While solving connectivities and
assigning stereostructures of isolated THF and hydroxybuten-
olide fragments are problems amendable to modern spectro-
scopic techniques,4 it can be very difficult to deduce (1) what
the configurations of isolated fragments are relative to each other
and (2) which long alkyl chain (RR or RR′) is on which hydroxy-
bearing carbon of the dihydroxy-THF ring. The elegant assign-
ments of uvaricin, bullaticin, and related bis-THF acetogenins
by McLaughlin, Hoye and co-workers show that rigorous
structure proofs by appropriate derivatizations are possible, but
substantial effort is involved.5
(8) The following papers report isolation and/or biological testing of muriso-
lin: (a) Tormo, J. R.; Royo, I.; Gallardo, T.; Zafra-Polo, M. C.; Hernandez,
P.; Cortes, D.; Pelaez, F. Oncology Res. 2003, 14, 147-154. (b) Mootoo,
B. S.; Ali, A.; Khan, A.; Reynolds, W. F.; McLean, S. J. Nat. Prod. 2000,
63, 807-811. (c) Tormo, J. R.; Gallardo, T.; Arago, R.; Cortes, D.;
Estornell, E. Chem.-Biol. Interact. 1999, 122, 171-183. (d) Jiang, Z.; Yu,
D.-Q. J. Nat. Prod. 1997, 60, 122-125. (e) Liaw, C.-C.; Chang, F.-R.;
Chen, S.-L.; Wu, C.-C.; Lee, K.-H.; Wu, Y.-C. Bioorg. Med. Chem. 2005,
13, 4767-4776.
(9) (a) Figade`re, B. Acc. Chem. Res. 1995, 28, 359-365. (b) Hoppe, R.; Scharf,
H. D. Synthesis 1995, 1447-1464. (c) Figade`re, B.; Cave´, A. In Studies in
Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam,
1996; Vol. 18, pp 193-227. (d) Marshall, J. A.; Hinkle K. W.; Hagedorn,
C. E. Isr. J. Chem. 1997, 37, 97-107. (e) Casiraghi, G.; Zanardi, F.;
Battistini, L.; Rassu, G. Chemtracts: Org. Chem. 1998, 11, 803-827.
(10) (a) Sinha, S. C.; Sinha, A.; Yazbak, A.; Keinan, E. J. Org. Chem. 1996,
61, 7640-7641. (b) Avedissian, H.; Sinha, S. C.; Yazbak, A.; Sinha, A.;
Neogi, P.; Sinha, C.; Keinan, E. J. Org. Chem. 2000, 65, 6035-6051. (c)
Das, S.; Li, L.-S.; Abraham, S.; Chen, Z.; Sinha, S. C. J. Org. Chem. 2005,
70, 5922-5931.
(11) (a) Maezaki, N.; Kojima, N.; Tominaga, H.; Yanai, M.; Tanaka, T. Org.
Lett. 2003, 5, 1411-1414. (b) Kojima, N.; Maezaki, N.; Tominaga, H.;
Asai, M.; Yanai, M.; Tanaka, T. Chem.sEur. J. 2003, 9, 4980-4990. (c)
Kojima, N.; Maezaki, N.; Tominaga, H.; Yanai, M.; Urabe, D.; Tanaka, T.
Chem.sEur. J. 2004, 10, 672-680. (d) Watanabe, T.; Tanaka, Y.; Shoda,
R.; Sakamoto, R.; Kamikawa, K.; Uemura, M. J. Org. Chem. 2004, 69,
4152-4158. (e) Makabe, H.; Hattori, Y.; Kimura, Y.; Konno, H.; Abe,
M.; Miyoshi, H.; Tanaka, A.; Oritani, T. Tetrahedron 2004, 60, 10651-
10657.
The murisolins are an important group of three mono-THF
acetogenins (Figure 2) whose structures and the attendant
assignment problems are representative of many acetogenins.
Murisolin was isolated from the seeds of Annona muricata by
Cave´ and co-workers in 1990.6 These workers assigned the
1
relative configuration of the dihydroxy-THF ring by H NMR
spectroscopy studies. Five years later, McLaughlin again isolated
murisolin, this time from Asmina triloba, along with 16,19-cis-
murisolin and murisolin A.7,8 The structure of 16,19-cis-
1
murisolin was assigned as 1.16 by a combination of H NMR
studies on the natural product to establish the relative config-
uration of the dihydroxy-THF ring and Mosher ester studies to
(4) Dihydroxy-mono-THF rings: (a) Gale, J. B.; Yu, J.-G.; Khare, A.; Hu, X.
E.; Ho, D. K.; Cassady, J. M. Tetrahedron Lett. 1993, 34, 5851-5854.
Dihydroxy-bis-THF rings: (b) Hoye, T. R.; Suhadolnik, J. C. J. Am. Chem.
Soc. 1987, 109, 4402-4403. (c) Hoye, T. R.; Zhuang, Z. J. Org. Chem.
1988, 53, 5578-5580.
(12) (a) Maezaki, N.; Tominaga, H.; Kojima, N.; Yanai, M.; Urabe, D.; Ueki,
R.; Tanaka, T.; Yamori, T. Chem. Commun. 2004, 406-407. (b) Maezaki,
N.; Tominaga, H.; Kojima, N.; Yanai, M.; Urabe, D.; Tanaka, T. Chem.s
Eur. J. 2005, 11, 6237-6245.
(5) Rieser, M. J.; Hui, Y.; Rupprecht, J. K.; Kozlowski, J. F.; Wood, K. V.;
McLaughlin, J. L.; Hansen, P. R.; Zhuang, Z.; Hoye, T. R. J. Am. Chem.
Soc. 1992, 114, 10203-10213.
(13) Luo, Z. Y.; Zhang, Q. S.; Oderaotoshi, Y.; Curran, D. P. Science 2001,
291, 1766-1769.
(6) Myint, S. H.; Laurens, A.; Hocquemiller, R.; Cave´, A.; Davoust, D.; Cortes,
D. Heterocycles 1990, 31, 861-867.
(14) Short reviews: (a) Zhang, W. ArkiVoc 2004, 101-109. (b) Curran, D. P.
In The Handbook of Fluorous Chemistry; Gladysz, J. A., Curran, D. P.,
Horva´th, I. T., Eds.; Wiley-VCH: Weinheim, 2004; pp 128-156.
(7) Woo, M. H.; Zeng, L.; Ye, Q.; Gu, Z.-M.; Zhao, G.-X.; McLaughlin, J. L.
Bioorg. Med. Chem. Lett. 1995, 5, 1135-1140.
9
9562 J. AM. CHEM. SOC. VOL. 128, NO. 29, 2006