M. Sollogoub et al. / Tetrahedron Letters 43 (2002) 3121–3123
3123
2-Amino-5-bromo-pyridine
1
was protected using
7. (a) Mertes, M. P.; Zielinski, J.; Pillar, C. J. Med. Chem.
1967, 10, 320; (b) Knackmuss, H.-J.; Briaire, J. Liebigs
Ann. Chem. 1970, 736, 68.
8. (a) Beau, J. M.; Gallagher, T. Top. Curr. Chem. 1997,
187, 1; (b) Nicotra, F. Top. Curr. Chem. 1997, 187, 55; (c)
Postema, M. H. D. Tetrahedron 1992, 48, 8545.
9. (a) Shaban, M. A. E.; Nasr, A. Z. Adv. Heterocyclic
Chem. 1997, 68, 223; (b) Nasr, A. Z. Adv. Heterocyclic
Chem. 1998, 70, 163.
10. Chen, J. J.; Walker, J. A., II; Liu, W.; Wise, D. S.;
Townsend, L. B. Tetrahedron Lett. 1995, 36, 8363.
11. Hsieh, H.-P.; McLaughlin, L. W. J. Org. Chem. 1995, 60,
5356.
12. Piccirilli, J. A.; Krauch, T.; MacPherson, L. J.; Benner, S.
A. Helv. Chim. Acta 1991, 74, 397.
PMBCl and NaH yielding 11 (64%). Bromide–lithium
exchange in PMB-protected 11 with nBuLi at −78°C
and in situ reaction with lactone 9 furnished the hemi-
acetal that was subsequently reduced with excess of
Et3SiH/BF3·OEt2 to provide 12 as a single isomer in
64% yield. PMB groups were removed with TFA to
afford the known amine 1313 confirming the stereoselec-
tivity of the formation of 12. The 1H NMR spectrum of
13 was consistent with that reported in the literature.19
The primary amino group of 13 was acetylated and the
benzyl groups were cleaved using BBr3 and replaced
with acetates (91%) to give 14. It is also possible to
debenzylate 13 and convert the fully deprotected
nucleoside to 14 with acetic anhydride in pyridine, but
this is lower yielding. The pyridine 14 was oxidised to
the N-oxide with mCPBA and rearranged using Ac2O
at reflux to give the peracetylated pyridine derivative 15
in 75% yield over two steps. The final product 1620 was
obtained (79%) as a foam by heating 15 in concentrated
aqueous ammonia and removing the solvent under
reduced pressure.
13. Hildbrand, S.; Blaser, A.; Parel, S. P.; Leumann, C. J. J.
Am. Chem. Soc. 1997, 119, 5499.
14. Rozen, S.; Hebel, D.; Zamir, D. J. Am. Chem. Soc. 1987,
109, 3789.
15. Kelly, T. R.; Jagoe, C. T.; Gu, Z. Tetrahedron Lett. 1991,
32, 4263.
16. Katada, M. J. Pharm. Soc. Jpn. 1947, 67, 51.
17. Timpe, W.; Dax, K.; Weidmann, H. Carbohydr. Res.
1975, 39, 53.
18. (a) Hopkins, G. C.; Jonak, J. P.; Minnemeyer, H. J.;
Tieckelmann, H. J. Org. Chem. 1967, 32, 4040; (b) Shiao,
M.-J.; Tarng, K.-Y. Heterocycles 1990, 31, 819.
19. NMR data for 13: 1H NMR (300 MHz, CDCl3) 3.58 (dd,
J=10.5, 3.9 Hz, 1H), 3.63 (dd, J=10.5, 4.2 Hz, 1H), 3.79
(dd, J=7.4, 5.2 Hz, 1H), 4.01 (dd, J=5.2, 3.3 Hz, 1H),
4.31 (app.q, J=4.1 Hz, 1H), 4.41–4.62 (m, 6H), 4.90 (d,
J=7.4 Hz, 1H), 6.42 (d, J=8.5 Hz, 1H), 7.20–7.38 (m,
15H), 7.45 (dd, J=8.5, 2.2 Hz, 1H), 8.07 (d, J=2.2 Hz,
1H). 13C NMR (75.42 MHz, CDCl3) 70.7, 72.1, 72.5,
73.6, 77.6, 80.6, 81.8, 83.4, 108.6, 125.6, 127.8–128.6
(15C), 136.4, 137.8, 138.0, 138.2, 146.8, 158.5.
20. All compounds were fully characterised. Spectroscopic
data for 16: 1H NMR (300 MHz, D2O): l 3.63 (t, J=10.9
Hz, 1H), 3.71 (dd, J=5.5 Hz, J=10.5 Hz, 1H), 3.88
(ddd, J=3 Hz, J=5.5 Hz, J=10.5 Hz, 1H), 3.94 (dd,
J=3 Hz, J=10.4 Hz, 1H), 4.24 (t, J=3 Hz, 1H), 4.56 (d,
J=10.4 Hz, 1H), 5.76 (d, J=8.4 Hz, 1H), 7.50 (d, J=8.4
Hz, 1H); 13C NMR (100 MHz, D2O): l 65.2, 67.1, 69.1,
71.2, 71.3, 91.9, 109.6, 144.4, 144.8, 162.7; MS/ES+: 243
(M+H)+. HRMS/ES+ m/z calcd for C10H14N2O5 (MH+)
243.0982 found 243.0976.
Acknowledgements
This work was funded by the Cancer Research
Campaign.
References
1. Matulic-Adamic, J.; Beigelman, L. Tetrahedron Lett.
1997, 38, 1667.
2. Hsieh, H.-P.; McLaughlin, L. W. J. Org. Chem. 1995, 60,
5356.
3. (a) Barton, D. H. R.; Ramesh, M. J. Am. Chem. Soc.
1990, 112, 891; (b) Kang, S. O.; Lee, S. B. J. Chem. Soc.,
Chem. Commun. 1995, 1017.
4. Review: Shaban, M. A. E.; Nasr, A. Z. Adv. Heterocycl.
Chem. 1997, 68, 223.
5. Lim, M.-I.; Klein, R. S. Tetrahedron Lett. 1981, 22, 25.
6. Lim, M.-I.; Ren, W.-Y.; Brian, A. O.; Klein, R. S. J. Org.
Chem. 1983, 48, 780.