Scheme 1
Herein, we report a one-pot preparation of new gem-
difluorinated dianion equivalents 3 involving reductive C-F
and C-Cl bond cleavage reactions of trifluoroacetimidoyl
chlorides 4.15 Mg(0)-promoted double silylation of 4 in a
one-pot procedure provided bis-silylated difluoroenamines
3 serving as both an acyl anion synthon and an enolate
synthon.
quently under mild conditions; each reaction was completed
within 30 min. As shown in Scheme 1, the presence of
electron-withdrawing and electron-donating substituents on
the N-aryl groups in 4 had little effect on the yields of 3.
Notably, Cl-arene functionalities in 3d and 3e were compat-
ible under the present reaction conditions.
The formation of 3 can be explained by assuming the
pathway pictured in Scheme 2. Initially, the reductive
The preparation of the requisite dianion equivalents 3 is
very simple. When imidoyl chlorides 4 were treated with
Mg metal (8 moleequiv to 4) and chlorotrimethylsilane (4
equiv) in distilled THF at 0 °C for 30 min, the dehalogenative
double silylation reactions proceeded smoothly to afford bis-
silylated difluoroenamines 3 in high yields (Scheme 1). Both
C-F and imidoyl C-Cl bonds in 4 were cleaved subse-
Scheme 2
(8) (a) Patel, S. T.; Percy, J. M.; Wilkes, R. D. Tetrahedron 1995, 51,
9201. (b) Howarth, J. A.; Owton, W. M.; Percy, J. M. J. Chem. Soc., Chem.
Commun. 1995, 757. (c) Howarth, J. A.; Owton, W. M.; Percy, J. M.; Rock,
M. H. Tetrahedron 1995, 51, 10289. (d) Crowley, P. J.; Howarth, J. A.;
Owton, W. M.; Percy, J. M.; Stansfield, K. Tetrahedron Lett. 1996, 37,
5975. (e) Crowley, P. J.; Percy, J. M.; Stansfield, K. Tetrahedron Lett. 1996,
37, 8233. (f) Crowley, P. J.; Percy, J. M.; Stansfield, K. Tetrahedron Lett.
1996, 37, 8237. (g) Balnaves, A. S.; Gelbrich, T.; Hursthouse, M. B.; Light,
M. E.; Palmer, M. J.; Percy, J. M. J. Chem. Soc., Perkin Trans. 1 1999,
2525. (h) DeBoos, G. A.; Fullbrook, J. J.; Owton, W. M.; Percy, J. M.;
Thomas, A. C. Synlett 2000, 963. (i) DeBoos, G. A.; Fullbrook, J. J.; Percy,
J. M. Org. Lett. 2001, 3, 2859. (j) Garayt, M. R.; Percy, J. M. Tetrahedron
Lett. 2001, 42, 6377.
(9) (a) Ichikawa, J.; Sonoda, T.; Kobayashi, H. Tetrahedron Lett. 1989,
30, 1641. (b) Ichikawa, J.; Sonoda, T.; Kobayashi, H. Tetrahedron Lett.
1989, 30, 5437. (c) Ichikawa, J.; Sonoda, T.; Kobayashi, H. Tetrahedron
Lett. 1989, 30, 6379. (d) Ichikawa, J.; Moriya, T.; Sonoda, T.; Kobayashi,
H. Chem. Lett. 1991, 961. (e) Ichikawa, J.; Hamada, S.; Sonoda, T.;
Kobayashi, H. Tetrahedron Lett. 1992, 33, 337. (f) Okada, Y.; Minami, T.;
Yamamoto, T.; Ichikawa, J. Chem. Lett. 1992, 547. (g) Ichikawa, J.; Minami,
T.; Sonoda, T.; Kobayashi, H. Tetrahedron Lett. 1992, 33, 3779. (h)
Ichikawa, J.; Ikeura, C.; Minami, T. Synlett 1992, 739. (i) Ichikawa, J.;
Yonemaru, S.; Minami, T. Synlett 1992, 833.
(10) (a) Watanabe, H.; Yamashita, F.; Uneyama, K. Tetrahedron Lett.
1993, 34, 1941. (b) Tamura, K.; Yan, F.-Y.; Sakai, T.; Uneyama, K. Bull.
Chem. Soc., Jpn. 1994, 67, 300. (c) Watanabe, H.; Yan, F.-Y.; Sakai, T.;
Uneyama, K. J. Org. Chem. 1994, 59, 758. (d) Uneyama, K.; Noritake, C.;
Sadamune, K. J. Org. Chem. 1996, 61, 6055.
(11) Chou, T. S.; Heath, P. C.; Patterson, L. E.; Poteet, L. M.; Laikin,
R. E.; Hunt, A. H. Synthesis 1992, 565.
(12) (a) Schirlin, D.; Van Dorsselar, V.; Weber, F.; Weill, C.; Alten-
burger, J. M.; Neises, B.; Flynn, G.; Remy, J. M.; Tarnus, C. Bioorg. Med.
Chem. 1993, 3, 3. (b) Sham, H. L.; Eideburg, N. E.; Spanton, S. G.;
Kohlbrenner, D. W.; Betebenner, D. A.; Kempf, D. J.; Norbeck, D. W.;
Platter, J. J.; Erickson, J. W. J. Chem. Soc., Chem. Commun. 1991, 110.
(13) Berkowitz, D. B.; Sloss, D. G. J. Org. Chem. 1995, 60, 7047 and
references therein.
cleavage of C-Cl bonds of the imidoyl chlorides 4 took
place to generate imidoylmagnesium species 5, which reacted
with chlorotrimethylsilane to provide the imidoylsilanes 6.16,17
Subsequent two-electron reduction of the imidoylsilanes 6
afforded the â-fluorinated organomagnesium species 7, which
readily underwent â-elimination to form 3.
An interesting feature of the present “one-pot” reactions
is the double functionalization of imidoyl C-Cl bonds and
C-F bonds of 4 which possess their different nature.
Generally, C-Cl bonds of acyl chlorides and imidoyl
chlorides are highly reactive toward nucleophiles. Due to
the aggressive nature of their C-Cl bonds, these compounds
have been widely used for the electrophilic introduction of
acyl and imidoyl groups into organic molecules. On the
contrary, a C-F bond is known to be strong; the cleavage
of a C-F bond is not easy due to the large bond energy (ca.
552 kJ mol-1).18 However, the bond breaking does rather
easily occur when a CF3 group is attached to the π-electron
system because electron acceptance into the π-system and
subsequent extrusion of a fluoride ion may make large
(14) (a) Barnett, J. E. D. Carbon-Fluorine Compounds; Elsevier:
Amsterdam, The Netherlands, 1972. (b) Taylor, N. F., Ed. Fluorinated
Carbohydrates; American Chemical Society: Washington, DC, 1996.
(15) (a) Uneyama, K. J. Fluorine Chem. 1999, 97, 11. (b) Tamura, K.;
Mizukami, H.; Maeda, K.; Watanabe, H.; Uneyama, K. J. Org. Chem. 1993,
58, 32.
(16) Bourgeois, P.; Dunogues, J.; Duffaut, N.; Lapouyade, P. J. Orga-
nomet. Chem. 1974, 80, C25.
(17) The formation of the imidoylsilane 6b (Ar ) PMP) was observed
by conducting the reaction with a reduced amount of Mg (3 equiv) at much
lower temperature (-75 °C).
4298
Org. Lett., Vol. 5, No. 23, 2003