COMMUNICATIONS
13C{1H} NMR (75.5 MHz, [D8]THF, TMS): d À1.4, 21.9, 26.5; 29Si{1H}
NMR (59.6 MHz, [D8]THF, TMS): d 24.0.
unusual and shows a dimeric molecule, in which the two
lithium atoms Li(1) and Li(1)' are shared by the two
Ge atoms, to form an almost regular rhombus Ge(1)-Li(1)-
1
Spectral data for 3a: H NMR (300 MHz, [D8]THF, TMS): d 0.80 1.08
(m, 6H), 1.09 (d, J 7.7 Hz, 36H), 13C{1H} NMR (75.5 MHz, [D8]THF,
TMS): d 17.0, 22.1; 29Si{1H} NMR (59.6 MHz, [D8]THF, TMS): d 31.1.
Ge(1)'-Li(1)'
(Ge(1)-Li(1) 2.664(6),
Ge(1)-Li(1)'
2.709(6) ä). This arrangement is in sharp contrast to that of
the monomeric and symmetrical 1,1-dilithiosilane.[5] The
geometry of the Ge atom in 3b is far from the ideal
tetrahedral: both Ge atoms are pentacoordinated and bound
to the three Li atoms (Li(1), Li(1)', and Li(2) for Ge(1); Li(1),
Li(1)', and Li(2)' for Ge(1)'). Both Li(1) and Li(1)' atoms have
one coordinated THF molecule, whereas each Li(2) and Li(2)'
Received: November 19, 2001 [Z18236]
[1] For monographs on organolithium chemistry, see: a) B. J. Wakefield,
Organolithium Methods, Academic Press, London, 1988; b) A.-M.
Sapse, P. v. R. Schleyer, Lithium Chemistry:
Experimental Overview, Wiley, New York, 1995.
A Theoretical and
À
atom is coordinated by two THF molecules. The Si Ge bond
[2] For reviews on silyllithium compounds, see: a) P. D. Lickiss, C. M.
Smith, Coord. Chem. Rev. 1995, 145, 75; b) K. Tamao, A. Kawachi,
Adv. Organomet. Chem. 1995, 38, 1; c) J. Belzner, U. Dehnert, The
Chemistryof Organic Silicon Compounds , Vol. 2, Part 1 (Eds.: Z.
Rappoport, Y. Apeloig), Wi1ey, Chichester, 1998, chap. 14; d) A.
Sekiguchi, V. Ya. Lee, M. Nanjo, Coord. Chem. Rev. 2000, 210, 11.
[3] For recent papers on germyllithium compounds, see: a) J.-H. Hong, Y.
Pan, P. Boudjouk, Angew. Chem. 1996, 108, 213; Angew. Chem. Int.
Ed. Engl. 1996, 35, 186; b) R. West, H. Sohn, D. R. Powell, T. M¸ller,
Y. Apeloig, Angew. Chem. 1996, 108, 1095; Angew. Chem. Int. Ed.
Engl. 1996, 35, 1002; c) S.-B. Choi, P. Boudjouk, J.-H. Hong, Organo-
metallics 1999, 18, 2919; d) A. Kawachi, Y. Tanaka, K. Tamao, Eur. J.
Inorg. Chem. 1999, 461; e) S.-B. Choi, P. Boudjouk, K. Qin, Organo-
metallics 2000, 19, 1806.
À
lengths of 2.4026(11) and 2.4145(10) ä, as well as the Ge Li
bond lengths of 2.664(6), 2.649(6), and 2.709(6) ä, lie in the
normal range (2.38 2.46 ä for Si Ge bond lengths, and
[8]
À
[3d]
À
2.61 2.76 ä for Ge Li bond lengths).
As we expected, the 1,1-dilithiogermanes 3 are highly
reactive. The most important examples of the reactivity of 3
are their coupling reactions with dihalogermane or dihalosi-
lane to form the corresponding digermene or germasilene.
Thus, the reaction of 3a with dichlorobis(triisopropylsilyl)-
germane cleanly gave the tetrakis(triisopropylsilyl)digermene
(4).[9] Reaction of dichlorodimesitylsilane with 3b allowed us
to prepare unsymmetrically substituted 2,2-bis(di-tert-butyl-
(methyl)silyl)-1,1-dimesitylgermasilene (5) as a red-brown
solid in 77% yield (Scheme 2).[10, 11]
[4] The intermediate formation of Ph2GeLi2 was suggested by Mochida:
a) K. Mochida, N. Matsushige, M. Hamashima, Bull. Chem. Soc. Jpn.
¬
1985, 58, 1443 and later also reported by Satge: b) A. Castel, P.
¬
Riviere, J. Satge, H. Y. Ko, J. Organomet. Chem. 1988, 342, C1; c) A.
¬
Castel, P. Riviere, J. Satge, H. Y. Ko, Organometallics 1990, 9, 205.
There were also reports on the formation of intermediate Mes(H)-
iPr3Si
iPr3Si
SiiPr3
SiiPr3
¬
GeLi2: d) A. Castel, P. Riviere, J. Satge, D. Desor, J. Organomet.
THF
RT
+
+
(iPr3Si)2GeCl2
3a
Ge Ge
Chem. 1992, 433, 49 and Et2GeLi2: e) D. A. Bravo-Zhivotovskii, S. D.
Pigarev, O. A. Vyazankina, N. S. Vyazankin, Zh. Obshch. Khim. 1987,
57, 2644; J. Gen. Chem. 1987, 57, 2356. The formation of all
dilithiogermanes mentioned above was confirmed by trapping reac-
tions without isolation.
4
tBu2MeSi
tBu2MeSi
Mes
Mes
[5] A. Sekiguchi, M. Ichinohe, S. Yamaguchi, J. Am. Chem. Soc. 1999, 121,
10231.
THF
RT
Mes2SiCl2
3b
Ge
Si
[6] a) M. P. Egorov, S. P. Kolesnikov, Y. T. Struckov, M. Y. Antipin, S. V.
Sereda, O. M. Nefedov, J. Organomet. Chem. 1985, 290, C27; b) W.
Ando, H. Ohgaki, Y. Kabe, Angew. Chem. 1994, 106, 659; Angew.
Chem. Int. Ed. Engl. 1994, 33, 659; c) N. Tokitoh, K. Kishikawa, T.
Matsumoto, R. Okazaki, Chem. Lett. 1995, 827; d) N. Fukaya, M.
Ichinohe, Y. Kabe, A. Sekiguchi, Organometallics 2001, 20, 3364.
[7] Crystal structure analysis of 3b: Single crystals for X-ray analysis were
obtained by recrystallization from benzene. Diffraction data were
collected at 150 K on a MacScience DIP2030 K Image Plate Diffrac-
tometer with graphite-monochromated MoKa radiation (l
0.71070 ä). Crystal data: [{tBu2MeSi)2GeLi2(THF)2}2] ¥ C6H6,
C58H122Ge2Li4O4Si4, Mr 1168.86, monoclinic, space group P21/c,
a 11.2220(8), b 18.699(1), c 16.886(1) ä, b 102.550(4), V
5
Scheme 2. Synthesis of double bonded derivatives of Group 14 elements;
Mes 2,4,6-trimethylphenyl.
Experimental Section
Compound 2b: Dichlorobis(di-tert-butyl(methyl)silyl)germane (3.7g,
8.1 mmol) was heated under reflux with an excess of potassium (2.2 g,
57mmol) in bis(trimethylsilyl)acetylene (120 mL) for 19 h. After removal
of the inorganic salts by filtration and removal of the solvent in vacuo, the
residue was recrystallized from pentane to give 2b as colorless crystals
(3.7g, 81%). M.p. 125 127 8C (dec.); 1H NMR (300 MHz, [D6]benzene,
TMS): d À0.02 (s, 6H), 0.38 (s, 18H), 1.15 (s, 36H); 13C{1H} NMR
3458.7(4) ä3, Z 2, 1calcd 1.122 gcmÀ3
,
GOF 1.024. The final
R factor was 0.0607( Rw 0.1743 for all data) for 8186 reflections
with Io > 2s(Io). Crystal data for 2b at 120 K: C26H60GeSi4, Mr
557.69, monoclinic, space group P21/c, a 19.3030(6), b
11.0260(5), c 18.1070(7) ä, b 118.032(2)8, V 3401.1(2) ä3, Z
(75.5 MHz, [D6]benzene, TMS): d À4.9, 1.2, 22.1, 30.1, 165.3 (C C);
4, 1calcd 1.089 gcmÀ3
GOF 1.040, R 0.0632, Rw 0.0861. The
,
29Si{1H} NMR (59.6 MHz, [D6]benzene, TMS): d À9.6, 23.9; HRMS m/z:
structure was solved by the direct method and refined by the full-
matrix least-squares method using the SHELXL-97program. CCDC-
173500 for 2a, CCDC-173501 for 2b, and CCDC-173502 for 3b
contain the supplementary crystallographic data for this paper. These
retrieving.html (or from the Cambridge Crystallographic Data Centre,
12, Union Road, Cambridge CB2 1EZ, UK; fax: (44)1223-336-033;
or deposit@ccdc.cam.ac.uk).
calcd. for C26H60GeSi4: 558.2989, found: 558.2992.
Compound 3b: The germacyclopropene 2b (55 mg, 0.1 mmol) was treated
with an excess of lithium (15 mg, 2.2 mmol) in a dry, oxygen-free mixture of
Et2O (1.6 mL) and THF (0.4 mL) at room temperature for 2.5 h, to give a
red-brown reaction mixture. After the reaction was complete, the solvents
and bis(trimethylsilyl)acetylene were removed in vacuo. Then dry toluene
(1.5 mL) was added to the solid residue and excess lithium was removed by
filtration in a glovebox. After evaporation of toluene, the residue was
washed with pentane to give a pale yellow powder 3b (39 mg, 71%).
1H NMR (300 MHz, [D8]THF, TMS): d 0.12 (s, 6H), 1.03 (s, 36H);
[8] K. M. Baines, W. G. Stibbs, Coord. Chem. Rev. 1995, 145, 157.
[9] M. Kira, T. Iwamoto, T. Maruyama, C. Kabuto, H. Sakurai, Organo-
metallics 1996, 15, 3767.
Angew. Chem. Int. Ed. 2002, 41, No. 9
¹ WILEY-VCH Verlag GmbH, 69451 Weinheim, Germany, 2002
1433-7851/02/4109-1599 $ 20.00+.50/0
1599