Lanthionine Enkephalin Analogues
J ournal of Medicinal Chemistry, 2002, Vol. 45, No. 17 3753
(20) Li, H.; J iang, X.; Goodman, M. Synthesis, Conformational
Analysis and Biological Activities of Lanthionine Analogs of a
Cell Adhesion Modulator. J . Pept. Sci. 2001, 7, 82-91.
(21) Osapay, G.; Prokai, L.; Kim, H.-S.; Medzihradszky, K. F.; Coy,
D. H.; Liapakis, G.; Reisine, T.; Melacini, G.; Zhu, Q.; Wang, S.
H. H.; Mattern, R.-H.; Goodman, M. Lanthionine-Somatostatin
Analogs: Synthesis, Characterization, Biological Activity, and
Enzymic Stability Studies. J . Med. Chem. 1997, 40, 2241-2251.
(22) Melacini, G.; Zhu, Q.; Osapay, G.; Goodman, M. A Refined Model
for the Somatostatin Pharmacophore: Conformational Analysis
of Lanthionine-Sandostatin Analogs. J . Med. Chem. 1997, 40,
2252-2258.
foxide; DPDPE, Tyr-c[D-Pen-Gly-Phe-D-Pen]-OH; DPPA, di-
phenylphosphoryl azide; Fmoc, fluorenylmethoxycarbonyl;
GPI, guinea pig ileum; HOBt, 1-hydroxybenzotriazole mono-
hydrate; ip, intraperitoneal; IPE, diisopropyl ether; it., in-
trathecal; MVD, mouse vas deferens; n-hex, n-hexane; NMP,
N-methylpyrrolidinone; Pen, penicillamine; PyBOP, benzotri-
azole-1-yloxytrispyrrolidinophosphonium hexafluorophosphate;
RP-HPLC, reverse-phase high-performance liquid chromatog-
raphy; TFA, trifluoroacetic acid; TIS, triisopropylsilane; Trt,
triphenylmethyl.
(23) Zheng, H.; Fink, D.; Li, H.; J iang, X.; Aebi, S.; Law, P.; Goodman,
M.; Howell, S. B. In Vitro Antineoplastic Activity of a Novel
Lanthionine-Containing Peptide. Clin. Cancer Res. 1997, 3,
1323-1330.
(24) Mosberg, H. I.; Omnaas, J . R.; Goldstein, A. Structural Require-
ments for δ Opioid Receptor Binding. Mol. Pharmacol. 1987, 31,
599-602.
(25) Flippen-Anderson, J . L.; Hruby, V. J .; Collins, N.; George, C.;
Cudney, B. X-ray Structure of [D-Pen2, D-Pen5]Enkephalin, a
Highly Potent, δ Opioid Receptor-Selective Compound: Com-
parisons with Proposed Solution Conformations. J . Am. Chem.
Soc. 1994, 116, 7523-7531.
(26) Baker, T. J .; Rew, Y.; Goodman, M. Novel Reagents and
Reactions for Drug Design. Pure Appl. Chem. 2000, 72, 347-
354.
(27) Goodman, M.; Rew, Y.; Malkmus, S.; Svensson, C.; Yaksh, T.
L.; Chung, N. N.; Schiller, P. W.; Daubert, J . D.; Cassel, J . A.;
DeHaven, R. Design and Synthesis of Cyclic Lanthionine En-
kephalin Analogs: δ Opioid Receptor Selective Ligands. Pre-
sented at the 221st National Meeting of the Amercan Chemical
Society, San Diego, CA, April 1-5, 2001; Paper ORGN-109.
(28) Goodman, M.; Zapf, C.; Rew, Y. New Reagents, Reactions and
Peptidomimetics for Drug Design. Biopolymers 2001, 60, 229-
245.
(29) Osapay, G.; Wang, S.; Comer, D. D.; Toy-Palmer, A.; Zhu, Q.;
Goodman, M. Superactive Lanthionine-enkephalins. In Pep-
tides: Chemistry, Structure and Biology, Proceedings of the 13th
American Peptide Symposium; Hodges, R. S., Smith, J . A., Eds.;
ESCOM: Leiden, The Netherlands, 1994; pp 435-437.
(30) Polinsky, A.; Cooney, M. G.; Toy-Palmer, A.; Osapay, G.;
Goodman, M. Synthesis and Conformational Properties of the
Lanthionine-Bridged Opioid Peptide [D-AlaL2, AlaL5]Enkephalin
As Determined by NMR and Computer Simulations. J . Med.
Chem. 1992, 35, 4185-4194.
(31) Shao, H.; Wang, S. H. H.; Lee, C.-W.; Oesapay, G.; Goodman,
M. A. Facile Synthesis of Orthogonally Protected Stereoisomeric
Lanthionines by Regioselective Ring Opening of Serine â-Lactone
Derivatives. J . Org. Chem. 1995, 60, 2956-2957.
(32) Pu, Y.; Martin, F. M.; Vederas, J . C. Synthesis and Acylation of
Salts of L-Threonine â-Lactone: A Route to â-Lactone Antibiot-
ics. J . Org. Chem. 1991, 56, 1280-1283.
(33) Probert, J . M.; Rennex, D.; Bradley, M. Lanthionines for Solid
Phase Synthesis. Tetrahedron Lett. 1996, 37, 1101-1104.
(34) Lee, C. W.; Zhu, Q.; Shao, H.; Wang, S. H. H.; Osapay, G.;
Goodman, M. Design and Synthesis of Substituted Lanthionine
Enkephalin Opioids. In Peptides 1994, Proceedings of the 23rd
European Peptide Symposium; Maia, H. L. S., Ed.; ESCOM:
Leiden, The Netherlands, 1995; pp 627-628.
(35) Dugave, C.; Menez, A. Synthesis of Natural and non Natural
Orthogonally Protected Lanthionines from N-Tritylserine and
allo-Threonine Derivatives. Tetrahedron: Asymmetry 1997, 8,
1453-1465.
(36) J ensen, K. J .; Alsina, J .; Songster, M. F.; Vagner, J .; Albericio,
F.; Barany, G. Backbone Amide Linker Strategy for Solid-Phase
Synthesis of C-Terminal-Modified and Cyclic Peptides. J . Am.
Chem. Soc. 1998, 120, 5441-5452.
(37) Han, Y.; Albericio, F.; Barany, G. Occurrence and Minimization
of Cysteine Racemization during Stepwise Solid-Phase Peptide
Synthesis. J . Org. Chem. 1997, 62, 4307-4312.
(38) Besse, D.; Lombard, M. C.; Zajac, J . M.; Roques, B. P.; Besson,
J . M. Pre- and Postsynaptic Location of µ, δ and κ Opioid
Receptors in the Superficial Layers of the Dorsal Horn of the
Rat Spinal Cord. Prog. Clin. Biol. Res. 1990, 328, 183-186.
(39) Yaksh, T. L. Pharmacology and Mechanisms of Opioid Analgesic
Activity. Acta Anaesthesiol. Scand. 1997, 41, 94-111.
(40) Svensson, C.; Rew, Y.; Malkmus, S.; Schiller, P. W.; Goodman,
M.; Yaksh, T. Y. Systemic and Spinal Analgesic Activity of a δ
Opioid Selective Lanthionine Enkephalin Analogue. Unpub-
lished results.
(41) Wang, S. H. H.; Bahmanyar, S.; Taulane, J . P.; Goodman, M.
Enzymic Stability of Disulfide-Bridged Peptides and Their
Lanthionine Analogs. In Peptides: Chemistry, Structure and
Biology, Proceedings of the 14th American Peptide Symposium;
Kaumaya, P. T. P., Hodges, R. S., Eds; Mayflower Scientific:
Kingswinford, 1996; pp 715-716.
Ack n ow led gm en t. This work was supported by
NIH Grant R01-DA 05539 (M.G.). We thank Dr. Li
Zhang for the interpretation of NMR spectra and
Sandra Blaj Moore for her helpful assistance in the
preparation of this manuscript.
Su p p or tin g In for m a tion Ava ila ble: HRMS spectra and
HPLC profiles of the final products 1a -d . This material is
Refer en ces
(1) Reisine, T.; Bell, G. I. Molecular Biology of Opioid Receptors.
Trends Neurosci. 1993, 16, 506-510.
(2) Reisine, T.; Pasternak, G. Opioid Analgesics and Antagonists.
In Goodman & Gilman’s the pharmacological basis of thera-
peutics, 9th ed.; Hardman, J . G., Limbird, L. E., Eds.; McGraw-
Hill: New York, 1996; pp 521-555.
(3) Millan, M. J . κ-Opioid Receptors and Analgesia. Trends Phar-
macol. Sci. 1990, 11, 70-76.
(4) Stevens, C. W.; Yaksh, T. L. Dynorphin A and Related Peptides
Administered Intrathecally in the Rat: A Search for Putative κ
Opiate Receptor Activity. J . Pharmacol. Exp. Ther. 1986, 238,
833-838.
(5) Nakazawa, T.; Ikeda, M.; Kaneko, T.; Yamatsu, K. Analgesic
Effects of Dynorphin A and Morphine in Mice. Peptides 1985,
6, 75-78.
(6) Caudle, R. M.; Mannes, A. J . Dynorphin: Friend or Foe? Pain
2000, 87, 235-239.
(7) Quock, R. M.; Burkey, T. H.; Varga, E.; Hosohata, Y.; Hosohata,
K.; Cowell, S. M.; Slate, C. A.; Ehlert, F. J .; Roeske, W. R.;
Yamamura, H. I. The δ-Opioid Receptor: Molecular Pharmacol-
ogy, Signal Transduction, and the Determination of Drug
Efficacy. Pharmacol. Rev. 1999, 51, 503-532.
(8) Przewlocki, R.; Przewlocka, B. Opioids in Chronic Pain. Eur. J .
Pharmacol. 2001, 429, 79-91.
(9) Hughes, J .; Smith, T. W.; Kosterlitz, H. W.; Fothergill, L. A.;
Morgan, B. A.; Morris, H. R. Identification of Two Related
Pentapeptides from the Brain with Potent Opiate Agonist
Activity. Nature (London) 1975, 258, 577-579.
(10) Dupont, A.; Cusan, L.; Garon, M.; Alvarado-Urbina, G.; Labrie,
F. Extremely Rapid Degradation of [3H]-Methionine-enkephalin
by Various Rat Tissues In Vivo and In Vitro. Life Sci. 1977, 21,
907-914.
(11) Hruby, V.; Gehrig, C. A. Recent Developments in the Design of
Receptor-Specific Opioid Peptides. Med. Res. Rev. 1989, 9, 343-
401.
(12) J ames, I. F.; Goldstein, A. Site-Directed Alkylation of Multiple
Opioid Receptors. I. Binding Selectivity. Mol. Pharmacol. 1984,
25, 337-342.
(13) Gacel, G.; Dauge, V.; Breuze, P.; Delay-Goyet, P.; Roques, B. P.
Development of Conformationally Constrained Linear Peptides
Exhibiting a High Affinity and Pronounced Selectivity for δ
Opioid Receptors. J . Med. Chem. 1988, 31, 1891-1897.
(14) Mosberg, H. I.; Hurst, R.; Hruby, V. J .; Gee, K.; Yamamura, H.
I.; Galligan, J . J .; Burks, T. F. Bis-penicillamine Enkephalins
Possess Highly Improved Specificity toward δ Opioid Receptors.
Proc. Natl. Acad. Sci. U.S.A. 1983, 80, 5871-5874.
(15) J ack, R. W.; J ung, G. Lantibiotics and Microcins. Polypeptides
with Unusual Chemical Diversity. Curr. Opin. Chem. Biol. 2000,
4, 310-317.
(16) Bierbaum, G. Antibiotic Peptidesslantibiotics. Chemother. J .
1999, 8, 204-209.
(17) Kaiser, D.; J ack, R. W.; J ung, G. Lantibiotics and Microcins:
novel Posttranslational Modifications of Polypeptides. Pure Appl.
Chem. 1998, 70, 97-104.
(18) J ack, R.; Gotz, F.; J ung, G. Lantibiotics. In Biotechnology, 2nd
ed.; Kleinkauf, H., Von Doehren, H., Eds.; VCH: Weinheim,
Germany, 1997; pp 323-368.
(19) Li, H.; J iang, X.; Howell, S. B.; Goodman, M. Synthesis,
Conformational Analysis and Bioactivity of Lan-7, a Lanthionine
Analog of TT-232. J . Pept. Sci. 2000, 6, 26-35.