10.1002/anie.201711188
Angewandte Chemie International Edition
COMMUNICATION
2.0
B. Kalyanaraman, A. Marcinek, R. Michalski, B. Michalowski, O. Ouari,
A. Sikora, R. Smulik, J. Zielonka, Pharmacol. Rep. 2015, 67, 756–764;
e) J. Zielonka, A. Sikora, M. Hardy, J. Joseph, B. P. Dranka, B.
Kalyanaraman, Chem. Res. Toxicol., 2012, 25, 1793–1799; f) J. Chan,
S. C. Dodani, C. J. Chang, Nat. Chem., 2012, 4, 973–984; g) A. R.
Lippert, G. C. Van de Bittner, C. J. Chang, Acc. Chem. Res., 2011, 44,
793–804.
a
d
b
e
c
CA1
1.5
1.0
0.5
0.0
CA3
C ontrol
P MA (10 ng mL
f
2.0
1.5
1.0
0.5
0.0
[5]
Some of these claims have been contentious. For discussions, see: a)
P. Wardman, Free Rad. Biol. Med. 2007, 43, 995–1022; b) B.
Kalyanaraman, V. Darley-Usmar, K. J. A. Davies, P. A. Dennery, H. J.
Forman, M. B. Grisham, G. E. Mann, K. Moore, L. J. Roberts II, H.
Ischiropoulos, Free Rad. Biol. Med. 2012, 52, 1–6; c) V. S. Lin, B. C.
Dickinson, C. J. Chang, Methods Enzymol. 2013, 526, 19–43; d) C. C.
Winterbourn, Biochim. et Biophys. Acta 2014, 1840, 730–738; e) J.
Zielonka, R. Podsiadly, M. Zielonka, M. Hardy, B. Kalyanaraman, Free
Rad. Biol. Med., 2016, 99, 32–42; f) E. J. New, ACS Sensors 2016, 1,
328–333.
-1
)
C A1
C A3
Figure 4. Pseudocolored ratiometric TPM images of a rat hippocampal slice
stained with 1·BH3 (100 µM). TPM images of a rat hippocampal slice stained
with (a, b) 1·BH3 for 1.5 h and (d, e) pretreated with PMA (10 ng mL-1) for 30
min before labeling with 1·BH3. TPM images were taken at 40x magnification
in the neuron layer of the (a, d) CA1 and (b, e) CA3 regions. (c) Bright-field
image of the CA1 and CA3 regions at 10x magnification. (f) Average Fgreen/Fblue
intensity ratios in the TPM images. Images were acquired using 710 nm
excitation and emission windows of 380–420 nm (blue) and 480–600 nm
(green). Scale bars = 50 µm.
[6]
For reviews, see: a) M. E. Roth, O. Green, S. Gnaim, D. Shabat, Chem.
Rev. 2015, 116, 1309–1352; b) A. Alouane, R. Labruère, T. Le Saux, F.
Schmidt, L. Jullien, Angew. Chem. Int. Ed. 2015, 54, 7492–7509;
Angew. Chem. 2015, 127, 7600–7619; c) S. Joshi-Barr, C. de Garcia
Lux, E. Mahmoud, A. Almutairi, Antioxid. Redox Signal. 2014, 21, 730–
754; d) G. I. Peterson, M. B. Larsen, A. J. Boydson, Macromolecules,
2012, 45, 7317–7328.
[7]
[8]
A. Staubitz, A. P. M. Robertson, M. E. Sloan, I. Manners, Chem. Rev.
2010, 110, 4023–4078.
Acknowledgements
For a review: D. P. Curran, A. Solovyev, M. Makhlouf Brahmi , L.
Fensterbank, M. Malacria, E. Lacôte, Angew. Chem. Int. Ed. 2011, 50,
10294–10317; Angew. Chem. 2011, 123, 10476–10500.
This work was supported by the National Research Foundation
[9]
A. Solovyev, Q. Chu, S. J. Geib, L. Fensterbank, M. Malacria, E. Lacôte,
D. P. Curran, J. Am. Chem. Soc. 2010, 132, 15072–15080.
of
Korea
(2012R1A3A2048814
to H.
to
M.
J.
K.;
Y.;
and
2016R1E1A1A02920873
[10] S. Gardner, T. Kawamoto, D. P. Curran, J. Org. Chem. 2015, 80, 9794–
9797.
2015R1D1A1A01059383 to J. B.). We thank Dr. Sung Hong Kim
of the Korean Basic Science Institute (Daegu) for EI-MS, and Dr.
Su Jin Kim of the Korean Basic Science Institute (Seoul) for ESI-
MS analyses.
[11] a) S.-H. Ueng, M. Makhlouf Brahmi, É. Derat, L. Fensterbank, E.
Lacôte, M. Malacria, D. P. Curran, J. Am. Chem. Soc. 2008, 130,
10082–10083; b) S.-H. Ueng, L. Fensterbank, M. Malacria, D. P.
Curran, Org. Biomol. Chem. 2011, 9, 3415–3420.
[12] a) Q. Chu, M. Makhlouf Brahmi, A. Solovyev, S.-H. Ueng, D. P. Curran,
M. Malacria, L. Fensterbank, E. Lacôte, Chem. Eur. J. 2009, 15,
12937–12940; b) D. M. Lindsay, D. McArthur, Chem. Commun. 2010,
46, 2474–2476; c) M. Horn, H. Mayr, E. Lacôte, E. Merling, J. Deaner,
S. Wells, T. McFadden, D. P. Curran, Org. Lett. 2012, 14, 82–85; d) T.
Taniguchi, D. P. Curran, Org. Lett. 2012, 14, 4540–4543; e) V. Lamm,
X. Pan, T. Taniguchi, D. P. Curran, Beilstein J. Org. Chem. 2013, 9,
675–680.
Keywords: boron • N-heterocyclic carbenes • reactive oxygen
species • fluorescence probes • two-photon microscopy
[1]
a) L.-C. Lo, C.-Y. Chu, Chem. Commun. 2003, 2728–2729; b) M.
Chang, A. Pralle, E. Y. Isacoff, C. J. Chang, J. Am. Chem. Soc. 2004,
126, 15392–15393; c) E. W. Miller, A. E. Albers, A. Pralle, E. Y. Isacoff,
C. J. Chang, J. Am. Chem. Soc. 2005, 127, 16652–16659; d) L. Du, M.
Li, S. Zheng, B. Wang, Tetrahedron Lett. 2008, 49, 3045–3048; e) N.
Karton-Lifshin, E. Segal, L. Omer, M. Portnoy, R. Satchi-Fainaro, D.
Shabat, J. Am. Chem. Soc. 2011, 133, 10960–10965; f) R. Michalski, J.
Zielonka, E. Gapys, A. Marcinek, J. Joseph, B. Kalyanaraman, J. Biol.
Chem. 2014, 289, 22536–22553; g) R. D. Hanna, Y. Naro, A. Dieters, P.
E. Floreancig, J. Am. Chem. Soc. 2016, 138, 13353–13360.
[13] a) T. Förster, Angew. Chem. 1969, 81, 364; Angew. Chem. Int. Ed.
1969, 8, 333; b) F. M. Winnik, Chem. Rev. 1993, 93, 587. c) S.
Karuppannan, J.-C. Chambron, Chem. Asian J. 2011, 6, 964; d) E.
Manandhar, K. J. Wallace, Inorg. Chim. Acta 2012, 381, 15.
[14] For recent examples of fluorescent probes for ROS that rely on the
pyrene excimer, see ref. 3c, and: a) C.-C Zhang, Y. Gong, Y. Yuan, A.
Luo, W. Zhang, J. Zhang, X. Zhang, W. Tan, Anal. Methods 2014, 6,
609–614; b) Y. Wu, J. Wang, F. Zeng, S. Huang, J. Huang, H. Xie, C.
Yu, S. Wu, ACS Appl. Mater. Interfaces, 2016, 8, 1511–1519.
[15] a) H. M. Kim, B. R. Cho, Chem. Rev. 2015, 115, 5014-5055; b) S. W.
Perry, R. M. Burke, E. B. Brown, Ann. Biomed. Eng. 2012, 40, 277-291;
c) F. Helmchen, W. Denk, Nat. Methods. 2005, 2, 932-940.
[2]
[3]
a) Q. Xu, K.-A. Lee, S. Lee, K. M. Lee, W.-J. Lee, J. Yoon, J. Am.
Chem. Soc. 2013, 135, 9944–9949; b) Q. Wang, C. Liu, J. Chang, Y.
Lu, S. He, L. Zhao, X. Zeng, Dyes and Pig. 2013, 99, 733–739.
a) A. Sikora, J. Zielonka, M. Lopez, J. Joseph, B. Kalyanaraman, Free
Rad. Biol. Med. 2009, 47, 1401–1407; b) J. Zielonka, A. Sikora, J.
Joseph, B. Kalyanaraman, J. Biol. Chem. 2010, 285, 14210–14216; c)
F. Yu, P. Song, P. Li, B. Wang, K. Han, Analyst 2012, 137, 3740–3749;
d) Z. Sun, Q. Xu, G. Kim, S. E. Flower, J. P. Lowe, J. Yoon, J. S.
Fossey, X. Qian, S. D. Bull, T. D. James, Chem. Sci. 2014, 5, 3368–
3373.
[16] a) C. C. King, M. M. Jefferson, E. L. Thomas, J. Leukoc. Biol. 1997, 61,
293–302; b) C. C. Winterbourn, M. B. Hampton, J. H. Livesey, A. J.
Kettle, J. Biol. Chem. 2006, 281, 39860–39869; c) Y. W. Yap, M.
Whiteman, N. S. Cheung, Cell. Signal. 2007, 19, 219–228.
[4]
For recent reviews and accounts, see: a) X. Chen, F. Wang, J. Y. Hyun,
T. Wie, J. Qiang, X. Ren, I. Shin, J. Yoon, Chem. Soc. Rev. 2016, 45,
2976–3016; b) C. Tapeinos, A. Pandit, Adv. Mater. 2016, 28, 5553–
5585; c) T. D. Ashton, K. A. Joliffe, F. M. Pfeffer, Chem. Soc. Rev. 2015,
44, 4547–4595; d) K. Debowska, D. Debski, M. Hardy, M. Jakubowska,
[17] M.-J. Jou, S.-B. Jou, M.-J Guo, H.-Y. Wu, T.-I. Peng, Ann. N. Y. Acad.
Sci., 2004, 1011, 45–56.
This article is protected by copyright. All rights reserved.