798
A. M. Bernard et al.
LETTER
Scheme 4
(6) It has not been possible to isolate the oxaspiropentane 2e, as
it is transformed to the corresponding cyclobutanone 3e
during the epoxidation reaction.
ity could be explained with the unfavorable steric
hindrance present in the generation of the other possible
chromene, that should have all the three groups in relative
cis position.
(7) Some derivatives have been previously reported. For 1a–e, g
see: (a) Bernard, A. M.; Piras, P. P. Synth. Commun. 1997,
27, 709. (b) Bernard, A. M.; Piras, P. P. Synlett 1997, 5,
585. (c) Brandi, A.; Carli, S.; Goti, A. Heterocycles 1988,
27, 17. (d) For 2a,b, 3a see: Bernard, A. M.; Floris, C.;
Frongia, A.; Piras, P. P. Synlett 1998, 668. (e) For 3b see:
Bernard, A. M.; Floris, C.; Frongia, A.; Piras, P. P.
Tetrahedron 2000, 56, 4555.
(8) Typical procedure for the preparation of chromenes 4a–f: A
stirred solution of cyclobutanone 3 (2.7 mmol) and p-
toluenesulfonic acid (0.27 mmol, 0.046 g) in benzene (10
mL) was refluxed for 6 h. The reaction mixture was diluted
with CH2Cl2 and washed with 10% NaHCO3 and brine, dried
(Na2SO4) and evaporated to remove the solvent. The residue
was purified by chromatography on silica gel with Et2O–
light petroleum (1:1) as eluent.
In conclusion we have reported a synthesis of a new class
of chromenes containing the cyclobutane ring that is sus-
ceptible to be opened as a consequence of its strain to new
functionalized chromenes. This transformation is particu-
larly important as it represents a versatile access to the
family of the isoflav-3-enes bearing a 2H-1-benzopyran
nucleus that are gaining increasing importance for their
antiestrogen activity.9 Chiral non racemic version of this
reaction is being studied and the results will be presented
in due course.
Acknowledgement
All new compounds have been fully characterized by 1H
NMR (300 MHz), 13C NMR (75.4 MHz) and mass spectra
(70 eV). Analytical data for some representative derivatives
are reported. 1f: colorless oil; yield: 70%. 1H NMR (CDCl3)
: 1.00–1.22 (m. 4 H), 1.52 (d, 3 H, J = 6.6 Hz), 1.84 (s, 3
H), 5.05 (q, 1 H, J = 6.6 Hz), 6.90–7.28 (m, 5 H). 13C NMR
(CDCl3) : 1.14, 2.76, 15.10, 19.71, 78.56, 115.65, 118.76,
120.65, 124.74, 129.12, 158.16. 3e: yellow oil; yield: 85%.
1H NMR (CDCl3) : 2.48–2.58 (m, 1 H), 2.73–2.82 (m, 1 H),
2.98–3.10 (m, 1 H), 3.18–3.30 (m, 1 H), 3.97, 4.23 (AB q, 2
H, J = 9 Hz), 7.22–7.44 (m, 10 H). 13C NMR (CDCl3) :
21.09, 44.09, 72.06, 72.54, 114.58, 121.25, 126.58, 127.50,
128.69, 129.43, 137.83, 158.43, 210.17. IR (neat, cm–1) :
1782. MS m/z: 252 [M+ (0.4)], 209(5), 195(9), 159(100),
131(23), 117(60). 4e: yellow oil; yield 60%. 1H NMR
(CDCl3) : 2.13–2.27 (m, 1 H), 2.19 (br s, 1 H), 2.26–2.33
(m, 2 H), 2.54–2.61 (m, 1 H), 4.05,4.14 (AB q, 2 H, J = 11.4
Hz), 6.85–7.65 (m, 9 H). 13C NMR (CDCl3) : 19.94, 36.76,
52.91, 71.74, 72.68, 117.29, 122.08, 127.22, 127.32, 127.58,
128.57, 128.79, 129.73, 138.37, 154.17. IR (neat, cm–1) :
3450. MS m/z: 252 [M+(6)], 234(5), 224(8), 121(100). 5e:
red oil; yield 56%. 1H NMR (CDCl3) : 2.41 (s, 3 H), 2.81 (t,
2 H, J = 7.5 Hz), 3.99 (t, 2 H, J = 7.5 Hz), 4.78 (s, 2 H), 6.81–
7.64 (m, 10 H). 13C NMR (CDCl3) : 21.55, 26.98, 68.19,
69.39, 116.19, 121.51, 122.60, 123.25, 124.00, 127.69,
127.78, 128.02, 128.77, 128.91, 129.69, 132.69, 134.34,
13.44, 144.54, 153.89. IR (neat, cm–1): 1160,1350.
(9) (a) Gauthier, S.; Caron, B.; Cloutier, J.; Dory, Y. L.; Favre,
A.; Larouche, D.; Mailhot, J.; Ouellet, C.; Schwerdtfeger,
A.; Leblanc, G.; Martel, C.; Simard, J.; Merand, Y.;
Belanger, A.; Labrie, C.; Labrie, F. J. Med. Chem. 1997, 40,
2117. (b) Varma, R. S.; Dahiya, R. J. Org. Chem. 1998, 63,
8038.
Financial support from the Ministero dell’Università e della Ricerca
Scientifica e Tecnologica, Rome, and by the University of Cagliari
(National Project ‘Stereoselezione in Sintesi Organica. Metodolo-
gie ed Applicazioni’) and from C.N.R. (Italy) is gratefully acknow-
ledged.
References
(1) For a review see: Bellus, D.; Ernst, B. Angew. Chem. Int. Ed.
Engl. 1988, 27, 797.
(2) (a) Nemoto, H.; Ishibashi, H.; Nagamochi, M.; Fukumoto,
K. J. Org. Chem. 1992, 57, 1707. (b) Nemoto, H.; Shiraki,
M.; Fukumoto, K. Tetrahedron 1994, 50, 10391.
(c) Nemoto, H.; Miyata, J.; Fukumoto, K. Heterocycles
1996, 42, 165. (d) Nemoto, H.; Miyata, J.; Yoshida, M.;
Raku, N.; Fukumoto, K. J. Org. Chem. 1997, 62, 7850.
(e) Chevtchouk, T.; Ollivier, J.; Salaun, J. Tetrahedron:
Asymmetry 1997, 8, 1011. (f) Cho, S. Y.; Cha, J. K. Org.
Lett. 2000, 9, 1337.
(3) (a) Trost, B. M. Top. Curr. Chem. 1986, 133, 3. (b) Salaun,
J. Top. Curr. Chem. 1988, 144, 1.
(4) For a review see: Conia, J. M.; Salaun, J. Acc. Chem. Res.
1972, 5, 33.
(5) (a) Salaun, J. R.; Conia, J. M. J. Chem. Soc., Chem.
Commun. 1971, 1580. (b) Salaun, J.; Garnier, B.; Conia, J.
M. Tetrahedron 1974, 30, 1413. (c) Salaun, J.; Champion,
J.; Conia, J. M. Org. Synth. 1977, 57, 46. (d) Salaun, J.;
Champion, J.; Conia, J. M. Org. Synth. Coll. Vol. VI 1988,
320.
Synlett 2002, No. 5, 796–798 ISSN 0936-5214 © Thieme Stuttgart · New York