Suzuki-Miyaura Cross-Coupling Reactions of Potassium
Vinyltrifluoroborate with Aryl and Heteroaryl Electrophiles
Gary A. Molander* and Adam R. Brown
Roy and Diana Vagelos Laboratories, Department of Chemistry, UniVersity of PennsylVania, Philadelphia,
PennsylVania 19104-6323
ReceiVed August 16, 2006
We have previously reported that the palladium-catalyzed cross-coupling reaction of potassium
vinyltrifluoroborate with aryl electrophiles proceeds with good yields. Herein, we describe recent progress
in optimizing the reaction, as well as outlining the scope and limitations of the reaction. The cross-
coupling reaction can generally be effected using 2 mol % of PdCl2 and 6 mol % of PPh3 as a catalyst
system in THF/H2O with Cs2CO3 as a base. Moderate to good yields are obtained in the presence of a
variety of functional groups.
Introduction
Although the palladium-catalyzed Heck reaction of aryl halides
with ethylene provides access to substituted styrenes,5 the high
pressures required for the reaction and the tendency for further
reaction to give stilbenes make it undesirable.6 This problem
has prompted the development of organometallic vinylating
agents for use in transition-metal-mediated cross-coupling
reactions. These reactions generally involve vinylmagnesium,7
-tin,8 -silicon,9 or -boron10 compounds that couple with aryl
electrophiles to form the desired styrene product.
Substituted styrene starting materials have seen extensive use
in both specialty chemical and polymer syntheses. Not only can
styrenes be used in transformations such as olefin metathesis1
or Heck-type reactions2 but also the alkene can be employed
as a platform on which to introduce a variety of functionalities.3
In regard to polymer synthesis, a multitude of transformations
exist for polymerizing styrenes.4 The utility of such transforma-
tions has dramatically increased the demand for facile routes
to substituted styrenes.
Transition-metal-mediated cross-coupling reactions provide
efficient routes to functionalized styrenes that complement
traditional methods such as dehydration or Hoffman elimination,
both of which are incompatible with sensitive functional groups.
(5) Plevyak, J. E.; Heck, R. F. J. Org. Chem. 1978, 43, 2454-2456.
(6) Spencer, A. J. Organomet. Chem. 1983, 258, 101-108.
(7) Bumagin, N. A.; Luzikova, E. V. J. Organomet. Chem. 1997, 532,
271-273.
(8) (a) Littke, A. F.; Schwartz, L.; Fu, G. C. J. Am. Chem. Soc. 2002,
124, 6343-6348. (b) Grasa, G. A.; Nolan, S. P. Org. Lett. 2001, 3, 119-
122. (c) McKean, D. R.; Parrinello, G.; Renaldo, A. F.; Stille, J. K. J. Org.
Chem. 1987, 52, 422-424. (d) Shirakawa, E.; Yamasaki, K.; Tamerjiro,
H. Synthesis 1998, 1544-1549. (e) Krolski, M. E.; Renaldo, A. F.; Rudisill,
D. E.; Stille, J. K. J. Org. Chem. 1988, 53, 1170-1176.
(9) (a) Denmark, S. E.; Butler, C. R. Org. Lett. 2006, 8, 63-66. (b)
Denmark, S. E.; Wang, Z. Synthesis 2000, 999-1003. (c) Denmark, S. E.;
Wang, Z. J. Organomet. Chem. 2001, 624, 372-375. (d) Hatanaka, Y.;
Hiyama, T. J. Org. Chem. 1988, 53, 918-920. (e) Jeffrey, T. Tetrahedron
Lett. 1999, 40, 1673-1676.
(10) (a) Kerins, F. O.; O’Shea, D. F. J. Org. Chem. 2002, 67, 4968-
4971. (b) Peyroux, E.; Berthiol, F.; Doucet, H.; Santelli, M. Eur. J. Org.
Chem. 2004, 1075-1082. (c) Darses, S.; Michaud, G.; Genet, J.-P. Eur. J.
Org. Chem. 1999, 1875-1883. (d) Darses, S.; Michaud, G.; Genet, J.-P.
Tetrahedron Lett. 1998, 39, 5045-5048. (e) Stewart, S. K.; Whiting, A.
J. Organomet. Chem. 1994, 482, 293-300. (f) Lightfoot, A. P.; Twiddle,
S. J. R.; Whiting, A. Synlett 2005, 529-531. (g) Molander, G. A.; Rivero,
M. R. Org. Lett. 2002, 4, 107-109. (h) Grisorio, R.; Mastrorillo, C.
F. N.; Romanazzi, G.; Suranna, G. P. Tetrahedron Lett. 2005, 46, 2555-
2558.
(1) Grubbs, R. H. Tetrahedron 2004, 60, 7117-7140.
(2) (a) Heck, R. F. J. Am. Chem. Soc. 1968, 90, 5518-5526. (b) Braese,
S.; de Meijere, A. In Metal-Catalyzed Cross-Coupling Reactions; de Meijere,
A., Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004; pp 217-315. (c)
Beller, M.; Zapf, A.; Riermeier, T. H. In Transition Metals for Organic
Synthesis; Beller, M., Bolm, C., Eds.; Wiley-VCH: Weinheim, 2004; pp
271-305.
(3) (a) Rodriguez, A. L.; Bunlaksananusorn, T.; Knochel, P. Org. Lett.
2000, 2, 3285-3287. (b) Ikeda, Y.; Nakamaru, T.; Yorimitsu, H.; Oshima,
K. J. Am. Chem. Soc. 2002, 124, 6514-6515. (c) Terao, J.; Saito, K.; Nii,
S.; Kambe, N.; Sonada, N. J. Am. Chem. Soc. 1998, 120, 11822-11823.
(d) Crudden, C. M.; Hleba, Y. B.; Chen, A. C. J. Am. Chem. Soc. 2004,
126, 9200-9201. (e) RajanBabu, T. V.; Nomura, N.; Jin, J.; Nandi, M.;
Park, H.; Sun, X. J. Org. Chem. 2003, 68, 8431-8446. (f) Agbossou, F.;
Carpentier, J.-F.; Mortreux, A. Chem. ReV. 1995, 95, 2485-2506.
(4) (a) Lou, Y.; Baldamus, J.; Huo, Z. J. Am. Chem. Soc. 2004, 126,
13910-13911. (b) Guo, N.; Li, L.; Marks, T. J. J. Am. Chem. Soc. 2004,
126, 6542-6543.
10.1021/jo0617013 CCC: $33.50 © 2006 American Chemical Society
Published on Web 12/01/2006
J. Org. Chem. 2006, 71, 9681-9686
9681