RESEARCH FRONT
172
B. Leng and H. Tian
based on one molecule, that could inturn effectively enhance the
power of the molecular processor.
[4] (a)A. P. de Silva, H. Q. N. Gunaratne, C. P. McCoy, Nature 1993, 364,
42. doi:10.1038/364042A0
(b) S. Uchiyama, N. Kawai, A. P. de Silva, K. Iwai, J. Am. Chem. Soc.
2004, 126, 3032. doi:10.1021/JA039697P
Experimental
[5] (a) A. Credi, V. Balzani, S. J. Langford, J. F. Stoddart, J. Am. Chem.
Soc. 1997, 119, 2679. doi:10.1021/JA963572L
General Procedures
(b) J. Matsui, M. Mitsuishi, A. Aoki, T. Miyashita, J. Am. Chem. Soc.
2004, 126, 3708. doi:10.1021/JA039871+
1H NMR and 13C NMR spectra in DMSO-d6 were recorded on
a Bruker AM-500 spectrometer with tetramethylsilane (TMS)
as the internal standard. Mass spectra (MS) were obtained with
a HITACHI-80 spectrometer. UV-Vis absorption spectra were
performed on a Varian Cary 500 spectrophotometer and fluo-
rescence spectroscopy was conducted on a Varian Cary Eclipse
fluorescence spectrophotometer. The melting point was mea-
sured on an X4 Micro-melting point apparatus. N-Butyl-4-
hydrazino-1,8-naphthalimide was prepared based on a known
method.[15d] All other starting materials and reagents were
purchased and used as received.
[6] (a) J.-M. Montenegro, E. Perez-Inestrosa, D. Collado,Y.Vida, R. Suau,
Org. Lett. 2004, 6, 2353. doi:10.1021/OL0492748
(b) X. Guo, D. Zhang, H. Tao, D. Zhu, Org. Lett. 2004, 6, 2491.
doi:10.1021/OL0494111
(c) S. D. Straight, J. Andréasson, G. Kodis, S. Bandyopadhyay,
R. H. Mitchell, T. A. Moore, A. L. Moore, D. Gust, J. Am. Chem.
Soc. 2005, 127, 9403. doi:10.1021/JA051218U
(d) D. H. Qu, F.Y. Ji, Q. C. Wang, H. Tian, Adv. Mater. 2006, 18, 2035.
doi:10.1002/ADMA.200600235
[7] (a) M. de Sousa, B. de Castro, S. Abad, M. A. Miranda, U. Pischel,
Chem. Commun. 2006, 2051. doi:10.1039/B600932H
(b) Z. Guo, W. Zhu, Y. Xiong, H. Tian, Macromolecules 2009, 42,
1448. doi:10.1021/MA802660E
[8] A. P. de Silva, D. B. Fox, A. J. M. Huxley, T. S. Moody, Coord. Chem.
Rev. 2000, 205, 41. doi:10.1016/S0010-8545(00)00238-1
[9] X. Meng, W. Zhu, Q. Zhang, Y. Feng, W. Tan, H. Tian, J. Phys. Chem.
B 2008, 112, 15636. doi:10.1021/JP807179V
[10] (a) J. Andréasson, G. Kodis, Y. Terazono, P. A. Liddell,
S. Bandyopadhyay, R. H. Mitchell, T. A. Moore, A. L. Moore, D.
Gust, J. Am. Chem. Soc. 2004, 126, 15926. doi:10.1021/JA045577L
(b) D. Margulies, G. Melman, C. E. Felder, R.Arad-Yellin,A. Shanzer,
J. Am. Chem. Soc. 2004, 126, 15400. doi:10.1021/JA0453329
(c) X. Guo, D. Zhang, G. Zhang, D. Zhu, J. Phys. Chem. B 2004, 108,
11942. doi:10.1021/JP047706Q
N-Butyl-4-(p-N,N-dimethylaminobenzylimino)
amino-1,8-naphthalimide (NAP)
To a 100 mL round-bottomed flask was added N-butyl-4-
hydrazino-1,8-naphthalimide (1.0 g, 3.5 mmol), p-N,N-
dimethylaminobenzaldehyde (0.54 g, 3.6 mmol), and ethanol
(60 mL). The mixture was refluxed for 2.5 h. After cooling to
room temperature, the precipitated product was filtered and
dried. The obtained crude solid was purified by recrystallization
from ethanol/acetone (2/1) to afford the title compound NAP
as red-brown crystals (1.2 g, 83%), mp: 267–269◦C. δH 8.79
(1H, d, J 8.47, naphthalene-H), 8.47 (1H, d, J 7.26, naphthalene-
H), 8.36 (2H, ss, naphthalene-H, NH), 7.77 (1H, t, J 8.26,
7.47, naphthalene-H), 7.65 (3H, dd, J 8.54, 8.85, naphthalene-H,
benzene-H), 6.79 (2H, d, J 8.9, benzene-H), 4.03 (2H, t, J 7.3,
NCH2), 3.00 (6H, s, N(CH3)2), 1.60 (2H, m, CH2), 1.35 (2H,
m, CH2CH3), 0.93 (3H, t, J 7.3, CH3). δC 163.6, 162.8, 147.9,
146.6, 144.9, 133.5, 130.5, 129.2, 128.4, 128.1, 124.4, 122.1,
121.8, 118.4, 111.3, 109.8, 106.1, 40.3, 29.8, 19.8, 13.7 (one
signal obscured by overlapping). m/z (HR-MS EI); Anal. Calc.
for C25H26N4O2 [M+] 414.2056. Found 414.2057.
(d) M. N. Stojanovic´, D. Stefanovic, J. Am. Chem. Soc. 2003, 125,
6673. doi:10.1021/JA0296632
(e) D.-H. Qu, Q.-C. Wang, H. Tian, Angew. Chem. Int. Ed. 2005, 44,
5296. doi:10.1002/ANIE.200501215
(f) D. Margulies, G. Melman, A. Shanzer, J. Am. Chem. Soc. 2006,
128, 4865. doi:10.1021/JA058564W
[11] (a) S. J. Langford, T. Yann, J. Am. Chem. Soc. 2003, 125, 11198.
doi:10.1021/JA036909+
(b) A. Coskun, E. Deniz, E. U. Akkaya, Org. Lett. 2005, 7, 5187.
doi:10.1021/OL052020H
(c) Z. Guo, P. Zhao, W. Zhu, X. Huang,Y. Xie, H. Tian, J. Phys. Chem.
C 2008, 112, 7047. doi:10.1021/JP0777162
[12] U. Pischel, Angew. Chem. Int. Ed. 2007, 46, 4026. doi:10.1002/ANIE.
200603990
[13] A. P. de Silva, N. D. McClenaghan, J.Am. Chem. Soc. 2000, 122, 3965.
doi:10.1021/JA994080M
Acknowledgements
This work was supported by NSFC/China, National Basic Research 973
Program (2006CB806200) and Scientific Committee of Shanghai.
[14] H. Tian, B. Qin, R.Yao, X. Zhao, S.Yang, Adv. Mater. 2003, 15, 2104.
doi:10.1002/ADMA.200305425
[15] (a) A. P. de Silva, T. E. Rice, Chem. Commun. 1999, 163.
doi:10.1039/A809119F
References
[1] (a) A. P. de Silva, N. D. McClenaghan, Chem. Eur. J. 2004, 10, 574.
doi:10.1002/CHEM.200305054
(b) B. Liu, H. Tian, Chem. Commun. 2005, 3156. doi:10.1039/
B501913C
(c) B. Liu, H. Tian, J. Mater. Chem. 2005, 15, 2681. doi:10.1039/
B501234A
(d) B. Liu, H. Tian, Chem. Lett. 2005, 34, 686. doi:10.1246/
CL.2005.686
(b) A. Credi, Angew. Chem. Int. Ed. 2007, 46, 5472. doi:10.1002/
ANIE.200700879
(c) A. P. de Silva, Y. Leydet, C. Lincheneau, N. D. McClenaghan,
J. Phys. Condens. Matter 2006, 18, S1847. doi:10.1088/0953-8984/
18/33/S06
[2] (a) P. Ghosh, P. K. Bharadwaj, J. Am. Chem. Soc. 1996, 118, 1553.
doi:10.1021/JA952520D
(e) J. Wang, X. Qian, Chem. Commun. 2006, 109. doi:10.1039/
B511319A
(b) C. P. Collier, E. W. Wong, M. Belohradsky, F. M. Raymo,
J. F. Stoddart, P. J. Kuekes, R. S. Williams, J. R. Heath, Science 1999,
285, 391. doi:10.1126/SCIENCE.285.5426.391
[3] A. P. de Silva, N. D. McClenaghan, Chem. Eur. J. 2002, 8, 4935.
doi:10.1002/1521-3765(20021104)8:21<4935::AID-CHEM4935>
3.0.CO;2-2
[16] J.-A. Gan, Q. L. Song, X. Y. Hou, K. Chen, H. Tian, J. Photochem.
Photobiol. Chem. 2004, 162, 399. doi:10.1016/S1010-6030(03)
00381-2
[17] C. J. Chang, E. M. Nolan, J. Jaworski, K.-I. Okamoto, Y. Hayashi,
M. Sheng, S. J. Lippard, Inorg. Chem. 2004, 43, 6774. doi:10.1021/
IC049293D