that it can challenge the classical approach using keto diols
(see 4) in the spiroketal synthesis. We report here the first
total synthesis of (+)-aigialospirol featuring a cyclic ketal-
tethered RCM in constructing the spiroketal core and a facile
epimerization of the benzylic hydroxyl group.
Our synthesis commenced with (S)-glycidol as the chiron
source for the C2′ stereocenter and prepared the known
dihydro-R-pyrone 613,14 in 62% yield over four steps (Scheme
2). Dihydroxylation15 of 6 followed by acetonide formation
noteworthy that the overall sequence leading to the key RCM
precursor 11 is short.
With cyclic ketal 11 in hand, the ring-closing metathesis
proceeded smoothly to give spiroketal 12 in 86% yield
employing 12.5 mol % of Grubb’s first generation catalyst
(Scheme 3).12 However, at this stage, NOE experiments using
Scheme 3. Cyclic Ketal-Tethered RCM and C6′
Epimerization
Scheme 2. Synthesis of Key Cyclic Ketal
12 confirmed our earlier fear when examining NOEs of 11,13
which only hinted that the stereochemistry at the C6′
spiroketal center could be wrong. The assignment of 12
implies that the alcohol 10 had added to the oxocarbenium
ion A (see Scheme 2) in an equatorial manner anti to the
C5′ oxygen. Fortuitously, when we removed the acetonide
group under acidic conditions, we found that the spiroketal
center had completely epimerized to the desired C6′ stereo-
center as evident by both NOE and X-ray structure of diol
13.
gave δ-lactone 7, and addition of vinyl Grignard to 7 gave
an equilibrating mixture of lactol 8 and vinyl ketone 9 in
88% yield overall. After being exposed to 1.00 equiv of
Tf2NH at -78 °C for 1 h,16,17 the key formation of cyclic
ketal 11 was accomplished in 76% yield from the lactol-
ketone mixture and the chiral homoallylic alcohol 10.13 While
the C6′ stereochemistry was confirmed at a later stage, cyclic
ketal 11 was isolated as a single diastereomer. It is
B3LYP/6-31G* calculations revealed that the acetonide-
protected spiroketal 12 is actually 0.68 kcal mol-1 more
stable than its corresponding C6′ epimer, whereas ∆E is 2.13
kcal mol-1 in favor of 13 over its C6′ epimer. Such an
enhanced stability is likely a result of hydrogen bonding
between C4′-OH and spiroketal oxygen, which was seen in
the X-ray structure and the minimized molecular model of
13.
(6) For a total synthesis of hypothemycin, see: (a) Selle`s, P.; Lett, R.
Tetrahedron Lett. 2002, 43, 4621 and 4627. For syntheses of other related
resorcylic macrolides, see: (b) Yang, Z. Q.; Geng, X.; Solit, D.; Pratilas,
C. A.; Rosen, N.; Danishefsky, S. J. J. Am. Chem. Soc. 2004, 126, 7881.
(c) Barluenga, S.; Dakas, P. Y.; Ferandin, Y.; Meijer, L.; Winssinger, N.
Angew. Chem., Int. Ed. 2006, 45, 3951. (d) Lu, J.; Ma, J.; Xie, X.; Chen,
B.; She, X.; Pan, X. Tetrahedron: Asymmetry 2006, 17, 1066. (e) Grosche,
P.; Akyel, K.; Marzinzik, A. Synthesis 2005, 2015. (f) Garbaccio, R. M.;
Stachel, S. J.; Baeschlin, D. K.; Danishefsky, S. J. J. Am. Chem. Soc. 2001,
123, 10903. (g) Lampilas, M.; Lett, R. Tetrahedron Lett. 1992, 33, 773
and 777.
(7) Isaka, M.; Suyarnsestakorn, C.; Tanticharoen, M.; Kongsaeree, P.;
Thebtaranonth, Y. J. Org. Chem. 2002, 67, 1561-1566.
(12) (a) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18. (b)
Hoveyda, A. H.; Schrock, R. R. Chem.sEur. J. 2001, 7, 945. (c) Schrock,
R. R.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2003, 42, 4592. (d) Walters,
M. A. In Progress in Heterocyclic Chemistry; Gribble, G. W., Joule, J.,
Eds. Pergamon: New York, 2003; Vol. 15, p 1. (e) Nakamura, I.;
Yamamoto, Y. Chem. ReV. 2004, 104, 2127. (f) Deiters, A.; Martin, S. F.
Chem. ReV. 2004, 104, 2199. (g) McReynolds, M. D.; Dougherty, J. M.;
Hanson, P. R. Chem. ReV. 2004, 104, 2239. (h) Wallace, D. J. Angew.
Chem., Int. Ed. 2005, 44, 1912.
(8) (a) Tanaka, H.; Nishida, K.; Sugita, K.; Yoshioka, T. Jpn. J. Cancer
Res. 1999, 90, 1139. (b) Schirmer, A.; Kennedy, J.; Murli, S.; Reid, R.;
Santi, D. V. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 4234.
(9) (a) Ghosh, S. K.; Hsung, R. P.; Wang, J. Tetrahedron Lett. 2004,
45, 5505. (b) Liu, J.; Hsung, R. P. Org. Lett. 2005, 7, 2273.
(10) For reviews, see: (a) Aho, J. E.; Pihko, P. M.; Rissa, T. K. Chem.
ReV. 2005, 105, 4406. (b) Mead, K. T.; Brewer, B. N. Curr. Org. Chem.
2003, 7, 227. (c) Brimble, M. A.; Fares, F. A. Tetrahedron 1999, 55, 7661.
(d) Fletcher, M. T.; Kitching, W. Chem. ReV. 1995, 95, 789. (e) Perron, F.;
Albizati, K. F. Chem. ReV. 1989, 89, 1617.
(11) For related work, see: (a) Keller, V. A.; Martinellie, J. R.; Strieter,
E. R.; Burke, S. D. Org. Lett. 2002, 4, 467. (b) Kinderman, S. S.; Doodeman,
R.; van Beijma, J. W.; Russcher, J. C.; Tjen, K. C. M. F.; Kooistra, T. M.;
Mohaselzadeh, H.; van Maarseveen, J. H.; Hiemstra, H.; Schoemaker, H.
E.; Rutjes, F. P. J. T. AdV. Synth. Catal. 2002, 344, 736. (c) Leeuwenburgh,
M. A.; Appeldoorn, C. C. M.; van Hooft, P. A. V.; Overkleeft, H. A.; van
der Marel, G. A.; van Boom, J. H. Eur. J. Org. Chem. 2000, 837. (d) Scholl,
M.; Grubbs, R. H. Tetrahedron Lett. 1999, 40, 1425. (e) Bassindale, M. J.;
Hamley, P.; Leitner, A.; Harrity, J. P. A. Tetrahedron Lett. 1999, 40, 3247.
(13) See Supporting Information.
(14) Hansen, T. V. Tetrahedron: Asymmetry 2002, 13, 547.
(15) Khalaf, J. K.; Datta, A. J. Org. Chem. 2005, 70, 6937.
(16) For leading references on using HNTf2, see: (a) Sakakura, A.;
Suzuki, K.; Nakano, K.; Ishihara, K. Org. Lett. 2006, 8, 2229. (b) Sun, J.;
Kozmin, S. A. J. Am. Chem. Soc. 2005, 127, 13512. For the acidity of
HNTf2, see: (c) Thomazeau, C.; Olivier-Bourbigou, H.; Magna, L.; Luts,
S.; Gilbert, B. J. Am. Chem. Soc. 2003, 125, 5264 and references cited
therein.
(17) (a) Ko, C.; Hsung, R. P. Org. Biomol. Chem. 2007, 7, 431. (b)
Ghosh, S. K.; Ko, C.; Liu, J.; Wang, J.; Hsung, R. P. Tetrahedron 2006,
62, 10485.
4858
Org. Lett., Vol. 9, No. 23, 2007