diaxial carbon–heteroatom bonds. Methylenation of the less
reactive aldehyde 22 employing the Petasis reagent (dimethylti-
tanocene)23 completed the allyl side chain 23. Sonogashira
coupling,13 followed by N–O bond cleavage and TBAF
deprotection yielded histrionicotoxin (2)-HTX 259A 3. Owing
to its surprising volatility this was immediately converted into
the hydrochloride salt 25 in good yield (82%, two steps), [a]D25.5
254.0 (c 0.2 in EtOH), the spectra (1H, 13C NMR and m/z) of
which were consistent with those of the natural material.15,17
In summary, we have shown that our tandem hydroxylamine
cyclisation–nitrone cycloaddition route to the histrionicotoxins
is highly divergent. Employing this approach followed by
selective elaboration of the core molecule 6 afforded (2)-his-
trionicotoxin 285E 5 in 4.5% overall yield (22 steps),
(2)-histrionicotoxin 285C 4 in 6.0% yield (21 steps) and
(2)-histrionicotoxin 259A hydrochloride 25 in 4.5% yield (19
steps). We thank the EPSRC for financial support and provision
of the Swansea Mass Spectrometry Service and Novartis for the
award of a CASE studentship (to C. J. S).
Scheme 3 Completion of the synthesis of (2)-HTX 285C 4. Reagents and
conditions: i, Amberlyst-15™, MeOH, 97%; ii, IBX, DMSO, 96%; iii,
TMSCMC(CH2)2MgBr, 0 °C, THF, 93%; iv, NaH, 0 °C ? rt, 1.5 h; CS2,
1 h; MeI, 1.5 h, THF, 83%; v, Bu3SnH, AIBN, benzene, 80 °C, 70%; vi, Zn,
AcOH, 30 min, 97%; vii, K2CO3, MeOH, overnight, 88%. IBX = o-
iodoxybenzoic acid.
Notes and references
‡ The BOM derivative was easier to prepare than the corresponding benzyl
ether.
§ The triisopropylsilyl protecting group was required to resist desilylation
during the forcing conditions required for displacement of the mesylate.
¶ We are unable to explain the discrepancy in the specific rotation of
5·HCl.
chromatography. Deoxygenation of each diastereomer using
Barton McCombie conditions via the intermediate xanthates 17
in toluene,20 gave the isoxazolidine 18 as a mixture of (Z) and
(E)-enynes. The alkene isomerisation could be minimised to
5+1 (Z):(E) (70%) using benzene as solvent. Separation of the
alkene isomers afforded the required isoxazolidine (Z)-18 for
conversion into the natural product. Reductive cleavage of the
strained N–O bond proceeded efficiently to produce bis-
(trimethylsilyl)histrionicotoxin 285C which was deprotected to
give the natural product 4, [a]1D8 243.3 (c 0.12 in CHCl3) [for
4·HCl [a]1D9 244.6 (c 0.12 in EtOH), lit.21 [a]2D5 243.4 (c 1.18
in EtOH)], the spectra (1H NMR, IR, m/z) of which were
identical to the natural material.17,22
(2)-Histrionicotoxin 259A 3 possesses a simple allyl
substituent at the C-2 position which could be introduced by
methylenation of a suitable aldehyde. The dinitrile 20 was
converted into the relatively unstable dialdehyde 2111 which
underwent regioselective Stork Wittig reaction at the C-7
aldehyde (Scheme 4). This is indeed remarkable since the C-7
aldehyde is apparently the more sterically hindered aldehyde;
however, it may be more electron deficient as a result of the two
1 J. W. Daly, I. Karle, C. W. Myers, T. Tokuyama, J. A. Waters and B.
Witkop, Proc. Natl. Acad. Sci. U.S.A., 1971, 68, 1870.
2 A. J. Lapa, E. X. Albuquerque, J. M. Sarvey, J. W. Daly and B. Witkop,
Exp. Neurol., 1975, 47, 558.
3 C. E. Spivak, M. A. Maleque, A. C. Oliveira, L. M. Masukawa, T.
Tokuyama, J. W. Daly and E. X. Albuquerque, Mol. Pharmacol., 1982,
21, 351.
4 J. W. Daly, Y. Nishizawa, J. A. Edwards, J. A. Waters and R. S.
Aronstam, Neurochem. Res., 1991, 16, 489.
5 M. A. Maleque, A. Brossi, B. Witkop, S. A. Godleski and E. X.
Albuquerque, J. Pharmacol. Exp. Ther., 1984, 299, 72.
6 T. Ogura and A. Warashina, Comp. Biochem. Physiol., 1987, 88C,
249.
8 R. A. Stockman, Tetrahedron Lett., 2000, 41, 9163.
9 S. C. Carey, M. Aratani and Y. Kishi, Tetrahedron Lett., 1985, 26,
5887.
10 G. Stork and K. Zhao, J. Am. Chem. Soc., 1990, 112, 5875.
11 G. M. Williams, S. D. Roughley, J. E. Davies and A. B. Holmes, J. Am.
Chem. Soc., 1999, 121, 4900; E. C. Davison, M. E. Fox, A. B. Holmes,
S. D. Roughley, C. J. Smith, G. M. Williams, J. E. Davies, P. R. Raithby,
J. P. Adams, I. T. Forbes, N. J. Press and and M. J. Thompson, J. Chem.
Soc., Perkin Trans. 1, 2002, in press (manuscript b200328g).
12 G. Stork and K. Zhao, Tetrahedron Lett., 1989, 30, 2173.
13 K. Sonogashira, Y. Tohda and N. Hagihara, Tetrahedron Lett., 1975, 12,
4467.
14 J. K. Stille and B. L. Groh, J. Am. Chem. Soc., 1987, 109, 813.
15 T. Tokuyama, J. Yamamoto, J. W. Daly and R. J. Highet, Tetrahedron,
1983, 39(1), 49.
16 T. Tokuyama, K. Uenoyama, G. Brown, J. W. Daly and B. Witkop,
Helv. Chim. Acta, 1974, 57, 2597.
17 T. F. Spande, H. M. Garraffo, J. W. Daly, T. Tokuyama and A. Shimada,
Tetrahedron, 1992, 48, 1823.
18 J. W. Daly and T. F. Spande, ‘The Alkaloids: Chemical and Biological
Perspectives’, ed. S. W. Pelletier, John Wiley, New York, 1986.
19 M. Frigerio and M. Santagostino, Tetrahedron Lett., 1994, 35, 8019.
20 D. H. R. Barton and S. W. McCombie, J. Chem. Soc., Perkin Trans. 1,
1975, 1574.
21 H. Takahashi, B. Witkop, A. Brossi, M. A. Maleque and E. X.
Albuquerque, Helv. Chim. Acta, 1982, 65, 252.
22 J. W. Daly, B. Witkop, T. Tokuyama, T. Nishikawa and I. Karle, Helv.
Chim. Acta, 1977, 60, 1128.
Scheme 4 The total synthesis of (2)-HTX 259A·HCl 25. Reagents and
conditions: i, Amberlyst-15™, MeOH, 84%; ii, methanesulfonyl chloride,
NEt3, DMAP, CH2Cl2, 100%; iii, NaCN, DMSO, 4 Å MS, 55 °C, 66%; iv,
DIBAL-H, toluene, 278 °C, 100%; v, KN(TMS)2, [Ph3PCH2I]+I2, THF,
278 °C, 60%; vi, Cp2TiMe2, toluene, 110 °C, 83%; vii, Pd(PPh3)4, CuI,
Et2NH, iPr3SiCMCH, 81%; viii, Zn, AcOH, 30 min, 89%; ix, TBAF, THF;
x, anhyd. HCl, MeOH, 82% (two steps).
23 N. A. Petasis and E. I. Bzowej, J. Am. Chem. Soc., 1990, 112, 6392.
CHEM. COMMUN., 2002, 1214–1215
1215