Article
Journal of Medicinal Chemistry, 2011, Vol. 54, No. 2 589
(q, J = 7.0 Hz, 1H), 4.13-4.06 (m, 1H), 4.01 (s, 3H), 3.99 (s, 3H),
3.87-3.69 (m, 2H), 3.51-3.31 (m, 1H), 3.25-3.18 (m, 1H), 1.50
(s, 9H), 1.25 (t, J = 7.0 Hz, 1H). (3R,4S)-1-tert-Butyl 3-ethyl
4-(2-chloro-6,7-dimethoxyquinazolin-4-ylamino)pyrrolidine-1,3-di-
carboxylate (0.962 g, 2.000 mmol), 5-fluoro-2-hydroxyphenylboro-
nic acid (0.344 g, 2.200 mmol), Na2CO3 (0.636 g, 6.000 mmol), and
Pd(PPh3)4 (0.114 g, 0.100 mmol) were dissolved in toluene (5 mL)
and H2O (2 mL) and N2 bubbled through the resulting biphasic
mixture for 30 min. The mixture was then heated at 100 °C for 24 h.
The mixture was cooled and H2O (100 mL) added. The aqueous
layer was extracted with EtOAc (2 ꢀ 100 mL). Organic extracts were
combined, dried over MgSO4, and concentrated. Purification by
silica column chromatography (67% EtOAc in hexanes) gave
(3R,4S)-1-tert-butyl 3-ethyl 4-(2-(5-fluoro-2-hydroxyphenyl)-
6,7-dimethoxyquinazolin-4-ylamino)pyrrolidine-1,3-dicarboxylate
(0.969 g, 87%). LC-MS (3.5 min) m/z 557 [M þ Hþ], Rt 2.97 min.
1H NMR (500 MHz, CDCl3) δ 8.20 (dd, J = 10.0, 3.0 Hz, 1H),
7.20-7.15 (m, 1H), 7.10-7.02 (m, 2H), 6.95 (dd, J = 9.0, 4.5 Hz,
1H), 6.34 (br d, J = 5.0 Hz, 1H), 5.17-5.12 (m, 1H), 4.32-4.26
(m, 2H), 4.03 (s, 3H), 4.02 (s, 3H), 3.94-3.32 (m, 5H), 1.52 (s, 9H),
1.28 (t, J = 7.0 Hz, 1H). MeMgBr (5.7 mL of a 3 M solution in
Et2O) was added to a solution of (3R,4S)-1-tert-butyl 3-ethyl
4-(2-(5-fluoro-2-hydroxyphenyl)-6,7-dimethoxyquinazolin-
4-ylamino)pyrrolidine-1,3-dicarboxylate (0.969 g, 1.723 mmol) in
THF (17 mL) at 0 °C. After 1 h at rt, satd aq NH4Cl (100 mL) was
carefully added and the aqueous layer extracted with EtOAc (2 ꢀ
75 mL). The organic layer was dried, concentrated, and the resulting
crude material resubjected to the above reaction conditions due to
presence of unreacted SM and intermediate methyl ketone. The
resulting crude was purified by silica column chromatography
(EtOAc) and the isolated Boc protected amine stirred in a solution
of MeOH (20 mL) and HCl (10 mL of a 4 M solution in dioxane) for
24 h. The reaction was concentrated, and the resulting crude product
purified by SCX-2 Isolute column, washing first with MeOH and
finally with 1 M NH3 in MeOH. Purification by Biotage column
chromatography (silica KP-NH, 5% MeOH in CH2Cl2) gave
4-fluoro-2-(4-((3S,4R)-4-(2-hydroxypropan-2-yl)pyrrolidin-3-
ylamino)-6,7-dimethoxyquinazolin-2-yl)phenol 46 (0.212 g, 28%).
LC-MS (3.5 min) m/z 355 [M þ Hþ], Rt 1.92 min. 1H NMR (500
MHz, MeOD) δ 8.13 (dd, J = 10.0, 3.0 Hz, 1H), 7.51 (s, 1H), 7.09
(s, 1H), 7.03 (ddd, J = 9.0, 8.0, 3.0 Hz, 1H), 6.86 (dd, J = 9.0, 4.5
Hz, 1H), 5.06-5.02 (m, 1H), 3.98 (s, 3H), 3.97 (s, 3H), 3.40-3.25
(m, 2H), 3.05-2.94 (m, 2H), 2.46 (dd, J = 14.0, 8.0 Hz, 1H), 1.32
(s, 3H), 1.30 (s, 3H). 13C NMR (126 MHz, DMSO) δ 158.1, 157.2,
156.7, 154.6 (d, J= 233 Hz), 154.5, 148.8, 143.4, 120.0 (d, J=8Hz),
118.6 (d, J= 24 Hz), 118.3 (d, J=8Hz), 113.6(d, J= 8 Hz), 107.0,
106.2, 102.7, 69.5, 56.3, 55.9, 55.6, 54.5, 53.6, 48.1, 28.6, 28.1 HRMS
calcd for C22H27N4O4F (M þ Hþ) 443.2089, found 443.2096.
CHK2 binding sites. This material is available free of charge via
References
(1) Lengauer, C.; Kinzler, K. W.; Vogelstein, B. Genetic Instabilities in
Human Cancers. Nature 1998, 396, 643–649.
(2) Coleman, W. B.; Tsongalis, G. J. The Role of Genomic Instability
in Human Carcinogenesis. Anticancer Res. 1999, 19, 4645–4664.
(3) Reinhardt, H.; Yaffe, M. Kinases that Control the Cell Cycle
Response to DNA damage: Chk1, Chk2, and MK2. Curr. Opin.
Cell Biol. 2009, 21, 245–255.
(4) Samuel, T.; Weber, H.; Funk, J. Linking DNA Damage to Cell
Cycle Checkpoints. Cell Cycle 2002, 2, 162–168.
(5) Stracker, T. H.; Usui, T.; Petrini, J. H. Taking the time to make
important decisions: the checkpoint effector kinases Chk1 and
Chk2 and the DNA damage response. DNA Repair 2009, 8,
1047–1054.
(6) Antoni, L.; Sodha, N.; Collins, I.; Garrett, M. D. CHK2 kinase:
cancer susceptibility and cancer therapy;two sides of the same
coin? Nature Rev. Cancer 2007, 7, 925–936.
(7) Kastan, M. B.; Bartek, J. Cell-cycle checkpoints and cancer. Nature
2004, 432, 316–323.
(8) Bartek, J.; Lukas, J. Chk1 and Chk2 kinases in checkpoint control
and cancer. Cancer Cell 2003, 3, 421–429.
(9) Hirao, A.; Kong, Y.; Matsuoka, S.; Wakeman, A.; Ruland, J.;
Yoshida, H.; Liu, D.; Elledge, S.; Mak, T. DNA Damage-Induced
Activation of p53 by the Checkpoint Kinase Chk2. Science 2000,
287, 1824–1827.
(10) Ahn, J. Y.; Schwarz, J. K.; Piwnica-Worms, H.; Canman, C. E.
Phosphorylation of threonine 68 promotes oligomerization and
autophosphorylation of the Chk2 protein kinase via the forkhead-
associated domain. Cancer Res. 2000, 60, 5934–5936.
(11) Matsuoka, S.; Rotman, G.; Ogawa, A.; Shiloh, Y.; Tamai, K.;
Elledge, S. Ataxia telangiectasia-mutated phosphorylates Chk2 in
vivo and in vitro. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 10389–
10394.
(12) Ahn, J.; Li, X.; Davis, H. L.; Canman, C. E. Phosphorylation of
threonine 68 promotes oligomerization and autophosphorylation
of the Chk2 protein kinase via the forkhead-associated domain.
J. Biol. Chem. 2002, 277, 19389–19395.
(13) Oliver, A. W.; Paul, A.; Boxall, K. J.; Barrie, S. E.; Aherne, G. W.;
Garrett, M. D.; Mittnacht, S.; Pearl, L. H. Trans-activation of the
DNA-damage signalling protein kinase Chk2 by T-loop exchange.
EMBO J. 2006, 25, 3179–3190.
(14) Wu, X.; Chen, J. Autophosphorylation of checkpoint kinase 2 at
serine 516 is required for radiation-induced apoptosis. J. Biol.
Chem. 2003, 278, 36163–36168.
(15) Schwarz, J. K.; Lovly, C. M.; Piwnica-Worms, H. Regulation of
the Chk2 protein kinase by oligomerization-mediated cis- and
trans-phosphorylation. Mol. Cancer Res. 2003, 1, 598–609.
(16) Pommier, Y.; Sordet, O.; Rao, V. A.; Zhang, H.; Kohn, K. W.
Targeting chk2 kinase: molecular interaction maps and therapeutic
rationale. Curr. Pharm. Des. 2005, 11, 2855–2872.
(17) Pommier, Y.; Weinstein, J. N.; Aladjem, M. I.; Kohn, K. W. Chk2
molecular interaction map and rationale for Chk2 inhibitors. Clin.
Cancer Res. 2006, 12, 2657–2661.
(18) Arienti, K. L.; Brunmark, A.; Axe, F. U.; McClure, K.; Lee, A.;
Blevitt, J.; Neff, D. K.; Huang, L.; Crawford, S.; Pandit, C. R.;
Karlsson, L.; Breitenbucher, J. G. Checkpoint kinase inhibitors:
SAR and radioprotective properties of a series of 2-arylbenzimi-
dazoles. J. Med. Chem. 2005, 48, 1873–1885.
(19) McClure, K. J.; Huang, L.; Arienti, K. L.; Axe, F. U.; Brunmark,
A.; Blevitt, J.; Breitenbucher, J. G. Novel non-benzimidazole chk2
kinase inhibitors. Bioorg. Med. Chem. Lett. 2006, 16, 1924–1928.
(20) Carlessi, L.; Buscemi, G.; Larson, G.; Hong, Z.; Wu, J. Z.; Delia,
D. Biochemical and cellular characterization of VRX0466617, a
novel and selective inhibitor for the checkpoint kinase Chk2. Mol.
Cancer Ther. 2007, 6, 935–944.
Acknowledgment. We thank Dr. A. Mirza, Dr. M. Liu,
and G. M. Richards for assistance in the characterization of
test compounds. We thank Dr. T. P. Matthews for assistance
in arranging hERG assays. This work was supported by
Cancer Research UK [CUK] grant numbers C309/A2187,
C309/A2874, C309/A8365, and C302/A8265 and Infrastruc-
ture Support grant C302/A7803 and by the Institute of Cancer
Research. We acknowledge NHS funding to the NIHR
Biomedical Research Centre.
(21) Larson, G.; Yan, S.; Chen, H.; Rong, F.; Hong, Z.; Wu, J. Z.
Identification of novel, selective and potent Chk2 inhibitors.
Bioorg. Med. Chem. Lett. 2007, 17, 172–175.
(22) Jobson, A. G.; Cardellina, J. H.; Scudiero, D.; Kondapaka, S.;
Zhang, H.; Kim, H.; Shoemaker, R.; Pommier, Y. Identification
of a Bis-guanylhydrazone [4,40-Diacetyldiphenylurea-bis(guanyl-
hydrazone); NSC 109555] as a novel chemotype for inhibition of
Chk2 kinase. Mol. Pharmacol. 2007, 72, 876–884.
(23) Hilton, S.; Naud, S.; Caldwell, J. J.; Boxall, K.; Burns, S.; Anderson,
V. E.; Antoni, L.; Allen, C. E.; Pearl, L. H.; Oliver, A. W.; Aherne,
G. W.; Garrett, M. D.; Collins, I. Identification and characterisation
of 2-aminopyridine inhibitors of checkpoint kinase 2. Bioorg. Med.
Chem. 2010, 18, 707–718.
Supporting Information Available: Experimental conditions
for CHK2 and CHK1 DELFIA. Experimental conditions for
SRB cytotoxicity assay in HT29 cells. Preparation and char-
acterization data for compounds 5-45, 47-49. Kinase selec-
tivity data for compounds 46 and 49. Experimental procedure
for the determination of inhibitor-CHK2 crystal structures and
statistics for the data collection and refinement of complexes of
CHK2 with 10, 24, and 46. Experimental method for radio-
protectant studies of 46 in mouse thymocytes. Alignment anal-
ysis of CHK1 and CHK2 sequences. Analysis of CHK1 and