10.1002/anie.201903757
Angewandte Chemie International Edition
COMMUNICATION
[14] a) T. Ikeda, J. I. Mamiya, Y. Yu, Angew. Chem. Int. Ed. 2007, 46, 506–
528; Angew. Chem. 2007, 119, 512–535; b) S. Kobatake, S. Takami, H.
Muto, T. Ishikawa, M. Irie, Nature 2007, 446, 778−781.
the photomechanical deformation mechanism has been
achieved using single crystal X-ray analysis and has been
supported by in situ PXRD and 1H or 13C NMR spectroscopy. Of
particular importance in this work is the clear demonstration of
macroscopic scale photodeformation which was achieved by
irradiating a composite membrane, formed by combining 1 and
PVA in a thin film. We believe these results illuminate a path
towards the generation of reliable photoactuator devices that are
capable of delivering a substantial and reproducible mechanical
response. The development of such devices has important
implications for a variety of technologically useful systems
including optomechanical microdevices and smart microrobotics.
[15] a) D. Kitagawa, H. Nishi, S. Kobatake, Angew. Chem. Int. Ed. 2013, 52,
9320−9322; Angew. Chem. 2013, 125, 9490–9492; b) R. Medishetty, A.
Husain, Z. Bai, T. Runcevski, R. E. Dinnebier, P. Naumov, J. J. Vittal,
Angew. Chem. Int. Ed. 2014, 53, 5907−5911; Angew. Chem. 2014, 126,
6017−6021; c) R. Medishetty, S. C. Sahoo, C. E. Mulijanto, P. Naumov,
J. J. Vittal, Chem. Mater. 2015, 27, 1821−1829.
[16] F. Tong, W. Xu, M. Al-Haidar, D. Kitagawa, R. O. Al-Kaysi, C. J.
Bardeen, Angew. Chem. Int. Ed. 2018, 57, 7080–7084; Angew. Chem.
2018, 130, 7198–7202.
[17] K. Kumar, C. Knie, D. Bleger, M. A. Peletier, H. Friedrich, S. Hecht, D. J.
Broer, M. G. Debije, A. P. H. J. Schenning, Nat. Commun. 2016, 7,
11975.
[18] a) E. Uchida, R. Azumi, Y. Norikane, Nat. Commun. 2015, 6, 7310; b) Q.
Li, G. Fuks, E. Moulin, M. Maaloum, M. Rawiso, I. Kulic, J. T. Foy, N.
Giuseppone, Nat. Nanotechnol. 2015, 10, 161−165; c) Q. Yu, X. Yang, Y.
Chen, K. Yu, J. Gao, Z. Liu, P. Cheng, Z. Zhang, B. Aguila, S. Ma,
Angew. Chem., Int. Ed. 2018, 57, 10192–10196; Angew. Chem. 2018,
130, 10349–10353; d) P. Gupta, D. P. Karothu, E. Ahmed, P. Naumov,
N. K. Nath, Angew. Chem., Int. Ed. 2018, 57, 8498–8502; Angew. Chem.
2018, 130, 8634–8638; e) S. C. Sahoo, N. K. Nath, L. Zhang, M. H.
Semreen, T. H. Al-Tel, P. Naumov, RSC Adv. 2014, 4, 7640–7647.
[19] a) Y. Gu E. A. Alt, H. Wang, X. Li, A. P. Willard, J. A. Johnson, Nature
2018, 560, 65−69; b) Q. Zhao, J. Heyda, J. Dzubiella, K. Täuber, J. W.
Dunlop, J. Yuan, Adv. Mater. 2015, 27, 2913–2917; c) P. Naumov, S.
Chizhik, M. K. Panda, N. K. Nath, E. Boldyreva, Chem. Rev. 2015, 115,
12440–12490.
Acknowledgements
This work was financially supported by the National Natural
Science Foundation of China (Grants Nos. 21531006 and
21773163), and the State Key Laboratory of Organometallic
Chemistry of Shanghai Institute of Organic Chemistry (Grant No.
2018kf-05), the Priority Academic Program Development of
Jiangsu Higher Education Institutions and the Postgraduate
Research & Practice Innovation Program of Jiangsu Province for
financial support (KYCX18_2495).
Conflict of interest
[20] W. Jiang, D. Niu, H. Liu, C. Wang, T. Zhao, L. Yin, Y. Shi, B. Chen, Y.
Ding, B. Lu, Adv. Funct. Mater. 2014, 24, 7598–7604.
[21] a) T. Lan, W. Chen, Angew. Chem. Int. Ed. 2013, 52, 6496–6500;
Angew. Chem. 2013, 125, 6624–6628; b) H. H. Cheng, J. Liu, Y. Zhao,
C. G. Hu, Z. P. Zhang, N. Chen, L. Jiang, L. T. Qu, Angew. Chem. Int.
Ed. 2013, 52, 10482–10486; Angew. Chem. 2013, 125, 10676–10680.
[22] a) H. C. Zhou, J. R. Long, O. M. Yaghi, Chem. Rev. 2012, 112, 673–674;
b) H. Furukawa, K. E. Cordova, M. O’Keeffe, O. M. Yaghi, Science 2013,
341, 1230444.
The authors declare no competing financial interests.
Keywords: Photoactuators • stimulus-responsive materials •
metal-organic frameworks • lattice contraction • photomechanical
deformation
[23] a) Z. Hu, B. J. Deibert, J. Li, Chem. Soc. Rev. 2014, 43, 5815–5840; b) L.
E. Kreno, K. Leong, O. K. Farha, M. R. P. Allendorf, Van Duyne, J. T.
Hupp, Chem. Rev. 2011, 112, 1105–1125.
[1] M. Ma, L. Guo, D. G Anderson, R. Langer, Science 2013, 339, 186–189.
[2] P. M. Mendes, Chem. Soc. Rev. 2008, 37, 2512–2529.
[3] K. Xiao, G. Xie, P. Li, Q. Liu, G. L. Hou, Z. Zhang, J. Ma, Y. Tian, L. P.
Wen, Jiang, Adv. Mater. 2014, 26, 6560–6565.
[24] W. Lin, W. J. Rieter, K. M. Taylor, Angew. Chem. Int. Ed. 2009, 48, 650–
658; Angew. Chem. 2009, 121, 660–668.
[4] D. Rus, M. T. Tolley, Nature 2015, 521, 467–475.
[25] J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C. Y. Su, Chem. Soc. Rev.
2014, 43, 6011–6061.
[5] a) D. Kitagawa, H. Tsujioka, F. Tong, X. Dong, C. J. Bardeen, S.
Kobatake, J. Am. Chem. Soc. 2018, 140, 4208–4212; b) J. Chen, F. K.
Leung, M. C. A. Stuart, T. Kajitani, T. Fukushima, E. van der Giessen, B.
L. Feringa, Nat. Chem. 2017, 10, 132−138.
[26] a) C. Y. Lee, O. K. Farha, B. J. Hong, A. A. Sarjeant, S. T. Nguyen, J. T.
Hupp, J. Am. Chem. Soc. 2011, 133, 15858–15861; b) T. Zhang, W. Lin,
Chem. Soc. Rev. 2014, 43, 5982–5993.
[6] W. A. Phillip, Nat. Energy 2016, 1, 16101.
[27] a) N. K. Nath, T. Runcevski, C. Y. Lai, M. Chiesa, R. E. Dinnebier, P.
Naumov, J. Am. Chem. Soc. 2015, 137, 13866−13875; b) S. Y. Yang, X.
L. Deng, R. F. Jin, P. Naumov, M. K. Panda, R. B. Huang, L. S. Zheng,
B. K. Teo, J. Am. Chem. Soc. 2013, 136, 558−561.
[7] a) M. Acerce, E. K. Akdoğan, M. Chhowalla, Nature 2017, 549, 370−373;
b) C. Cheng, A. H. W. Ngan, ACS Nano 2015, 9, 3984–3995.
[8] M. R. Islam, X. Li, K. Smyth, M. J. Serpe, Angew. Chem. Int. Ed. 2013,
52, 10330−10333; Angew. Chem. 2013, 125, 10520−10523.
[9] Y. Hu, Z. Li, T. Lan, W. Chen, Adv. Mater. 2016, 28, 10548–10556.
[10] J. Deng, J. Li, P. Chen, X. Fang, X. Sun, Y. Jiang, W. Weng, B. Wang, H.
Peng, J. Am. Chem. Soc. 2016, 138, 225−230.
[28] G. M. J. Schmidt, Pure Appl. Chem. 1971, 27, 647–678.
[29] D. Kitagawa, K. Kawasaki, R. Tanaka, S. Kobatake, Chem. Mater. 2017,
29, 7524−7532.
[30] Z. Li, X. Zhang, S. Wang, Y. Yang, B. Qin, K. Wang, T. Xie, Y. Wei, Y. Ji,
Chem. Sci. 2016, 7, 4741−4747.
[11] Q. Zhao, J. W. Dunlop, X. Qiu, F. Huang, Z. Zhang, J. Heyda, J.
Dzubiella, M. Antonietti, J. Yuan, Nat. Commun. 2014, 5, 4293.
[12] X. Zhang, Z. Yu, C. Wang, D. Zarrouk, J. W. T. Seo, J. C. Cheng, A. D.
Buchan, K. Takei, Y. Zhao, J. W. Ager, J. Zhang, M. Hettick, M. C.
Hersam, A. P. Pisano, R. S. Fearing, A. Javey, Nat. Commun. 2014, 5,
2983.
[31] H. Wang, P. Chen, Z. Wu, J. Zhao, J. Sun, R. Lu, Angew. Chem. Int. Ed.
2017, 56, 9463–9467; Angew. Chem. 2017, 129, 9591–9595.
[32] M. K. Panda, S. Ghosh, N. Yasuda, T. Moriwaki, G. D. Mukherjee, C. M.
Reddy, P. Naumov, Nat. Chem. 2015, 7, 65−72.
[33] Y. Yue, Y. Norikane, R. Azumi, E. Koyama, Nat. Commun. 2018, 9, 3234.
[34] a) Y. Li, L. Liang, C. Liu, Y. Li, W. Xing, J. Sun, Adv. Mater. 2018, 30,
1707146; b) B. R. Tiwari, Md. T. Noori, M. M. Ghangrekar, Mater. Chem,
Phys. 2016, 182, 86-93.
[13] a) J. A. Lv, Y. Liu, J. Wei, E. Chen, L. Qin, Y. Yu, Nature 2016, 537,
179–184; b) D. D. Han, Y. L. Zhang, J. N. Ma, Y. Q. Liu, B. Han, H. B.
Sun, Adv. Mater. 2016, 28, 8328–8343.
This article is protected by copyright. All rights reserved.