First author et al.
Report
temperatures of polyamides. J. Appl. Polym. Sci. 2017, 134, 1-12.
Acknowledgement
[15] Long, Y.; Zhang, R.; Huang, J.; Wang, J.; Jiang, Y.; Hu, G.-h.; Yang, J.; Zhu, J.
Tensile Property Balanced and Gas Barrier Improved Poly(lactic acid) by
Blending with Biobased Poly(butylene 2,5-furan dicarboxylate). ACS
Sustainable Chem. Eng. 2017, 5, 9244-9253.
[16] Jia, Z.; Wang, J.; Sun, L.; Zhu, J.; Liu, X. Fully bio-based polyesters derived
from 2,5-furandicarboxylic acid (2,5-FDCA) and dodecanedioic acid
(DDCA): From semicrystalline thermoplastic to amorphous elastomer. J.
Appl. Polym. Sci. 2018, 135, 46076 (1-12).
This work was supported by grants from the National Program
on Key Research Project (No. 2016YFA0602900), the National
Natural Science Foundation of China (No. 21871094), the Science
and Technology Program of Guangzhou, China (No.
201707010057), Guangdong Natural Science Foundation (No.
2017A030312005), and the Science and Technology Planning
Project of Guangdong Province, China (No. 2017A020216021).
[17] Kainulainen, T. P.; Sirviö, J. A.; Sethi, J.; Hukka, T. I.; Heiskanen, J. P.
UV-Blocking Synthetic Biopolymer from Biomass-Based Bifuran Diester
and Ethylene Glycol. Macromolecules 2018, 51, 1822-1829.
[18] Lomelí-Rodríguez, M.; Corpas-Martínez, J. R.; Willis, S.; Mulholland, R.;
Lopez-Sanchez, J. A. Synthesis and Characterization of Renewable
Polyester Coil Coatings from Biomass-Derived Isosorbide, FDCA,
1,5-Pentanediol, Succinic Acid, and 1,3-Propanediol. Polymers 2018, 10,
600.
[19] Sun, L.; Zhang, Y.; Wang, J.; Liu, F.; Jia, Z.; Liu, X.; Zhu, J.
2,5-Furandicarboxylic acid as a sustainable alternative to isophthalic acid
for synthesis of amorphous poly(ethylene terephthalate) copolyester
with enhanced performance. J. Appl. Polym. Sci. 2019, 136, 47186 (1-
12).
[20] Grigg, R.; Knight, J. A.; Sargent, M. V. Studies in furan chemistry. Part IV. 2,
2′-Bifurans. J. Chem. Soc. C. 1966, 0, 976-981.
[21] Gidron, O.; Diskin-Posner, Y.; Bendikov, M. ɑ-Oligofurans . J. Am. Chem.
Soc. 2010, 132, 2148-2150.
[22] Gidron, O.; Varsano, N.; Shimon, L. J. W.; Leitus, G.; Bendikov, M. Study of
a bifuran vs. bithiophene unit for the rational design of pconjugated
systems. What have we learned?. Chem. Commun. 2013, 49, 6256-
6258.
References
[1] Gallezot, P. Conversion of Biomass to Selected Chemical Products. Chem.
Soc. Rev. 2012, 41, 1538-1558.
[2] Besson, M.; Gallezot, P.; Pinel, C. Conversion of Biomass into Chemicals
over Metal Catalysts. Chem. Rev. 2014, 114, 1827-1870.
[3] Sheldon, R. A. Green and sustainable manufacture of chemicals from
biomass: state of the art. Green Chem. 2014, 16, 950-963.
[4] Li, C.; Zhao, X.; Wang, A.; Huber, G. W.; Zhang, T. Catalytic Transformation
of Lignin for the Production of Chemicals and Fuels. Chem. Rev. 2015, 115,
11559-11624.
[5] Zhang, Z.; Deng, K. Recent Advances in the Catalytic Synthesis of
2,5-Furandicarboxylic Acid and Its Derivatives. ACS Catal. 2015, 5, 6529-
6544.
[6] Zhang, S. ; Lan, J.; Chen, Z.; Yin, G.; Li, G. Catalytic Synthesis of
2,5-Furandicarboxylic Acid from Furoic Acid: Transformation from C5
Platform to C6 Derivatives in Biomass Utilization. ACS Sustainable Chem.
Eng. 2017, 5, 9360-9369.
[7] Kotha, S.; Todeti, S.; Gopal, M. B.; Datta, A. Synthesis and Photophysical
Properties of C3‑Symmetric Star-Shaped Molecules Containing
Heterocycles Such as Furan, Thiophene, and Oxazole. ACS Omega 2017, 2,
6291-6297.
[8] Sevenich, A.; Liu, G.-Q.; Arduengo, A. J.; Gupton, B. F.; Opatz, T.
Asymmetric One-Pot Synthesis of (3R,3aS,6aR)‑Hexahydrofuro
[2,3‑b]furan-3-ol: A Key Component of Current HIV Protease Inhibitors. J.
Org. Chem. 2017, 82, 1218-1223.
[9] Ni, L.; Xin, J.; Jiang, K.; Chen, L.; Yan, D. ; Lu, X.; Zhang, S. One-Step
Conversion of Biomass-Derived Furanics into Aromatics by Brønsted Acid
Ionic Liquids at Room Temperature. ACS Sustainable Chem. Eng. 2018, 6,
2541-2551.
[10] Chen, S.; Wojcieszak, R.; Dumeignil, F.; Marceau, E.; Royer, S. How
Catalysts and Experimental Conditions Determine the Selective
Hydroconversion of Furfural and 5‑Hydroxymethylfurfural. Chem. Rev.
2018, 118, 11023-11117.
[11] Li, X.-L.; Zhang, K.; Jiang, J.-L.; Zhu, R.; Wu, W.-P. ; Deng, J. ; Fu, Y.
Synthesis of medium-chain carboxylic acids or α,ω-dicarboxylic acids from
cellulose-derived platform chemicals. Green Chem. 2018, 20, 362-368.
[12] Nocito, F.; Ventura, M.; Aresta, M.; Dibenedetto, A. Selective Oxidation of
5‑(Hydroxymethyl)furfural to DFF Using Water as Solvent and Oxygen as
Oxidant with Earth-Crust-Abundant Mixed Oxides. ACS Omega 2018, 3,
18724-18729.
[23] Jin, X.H.; Sheberla, D.; Shimon, L. J. W.; Bendikov, M. Highly Coplanar
Very Long Oligo(alkylfuran)s:
A Conjugated System with Specific
Head-To-Head Defect. J. Am. Chem. Soc. 2014, 136, 2592-2601.
[24] Matsidik, R.; Luzio, A.; Askin, Ö.; Fazzi, D.; Sepe, A.; Steiner, U.; Komber,
H.; Caironi, M.; Sommer, M. Highly Planarized Naphthalene
Diimide−Bifuran Copolymers with Unexpected Charge Transport
Performance. Chem. Mater. 2017, 29, 5473-5483.
[25] Huang, X.; Chen, D.; He, M.; Li, J.; Huang, J.; Li, B. Crystal structure and
luminescent properties of novel coordination polymers constructed with
bifurandicarboxylic acid. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng.
Mater. 2017, 73, 715-721.
[26] Kainulainen, T. P.; Sirviö, J. A.; Sethi, J.; Hukka, T. I.; Heiskanen, J. P.
UV-Blocking Synthetic Biopolymer from Biomass-Based Bifuran Diester
and Ethylene Glycol. Macromolecules 2018, 51, 1822-1829.
[27] Juwaini, N. A. B.; Ng, J. K. P.; Seayad, J. Catalytic Regioselective Oxidative
Coupling of Furan-2-Carbonyls with Simple Arenes. ACS Catal. 2012, 2,
1787-1791.
[28] He, C.-Y.; Wang, Z.; Wu, C.-Z.; Qing, F.-L.; Zhang, X. Pd-catalyzed oxidative
cross-coupling between two electron rich heteroarenes. Chem. Sci. 2013,
4, 3508-3513
[29] Li, N.-N.; Zhang, Y.-L.; Mao, S.; Gao, Y.-R.; Guo, D.-D.; Wang, Y.-Q.;
Palladium-Catalyzed C—H Homocoupling of Furans and Thiophenes Using
Oxygen as the Oxidant. Org. Lett. 2014, 16, 2732-2735.
[30] Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. Oxidative Coupling
between Two Hydrocarbons: An Update of Recent C−H Functionalizations.
Chem. Rev. 2015, 115, 12138-12204.
[13] Sousa, A. F.; Vilela, C.; Fonseca, A. C.; Matos, M.; Freire, C. S. R.; Gruter,
G.-J. M.; Coelhob, J. F. J. ; Silvestre, A. J. D.; Biobased polyesters and other
polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency.
Polym. Chem. 2015, 6, 5961-5983.
[14] Cureton, L. T.; Napadensky, E.; Annunziato, C.; La Scala, J. J. The effect of
furan molecular units on the glass transition and thermal degradation
© 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Chin. J. Chem. 2019, 37, XXX-XXX
This article is protected by copyright. All rights reserved.