5324
M. Treus et al. / Tetrahedron Letters 43 (2002) 5323–5325
Scheme 1. Reagents and conditions: (i) LDA, THF, 0°C, 30–60 min (100% yield); (ii) (a) NaH, THF, rt, 30 min, (b) MeI, rt, 45–60
min (74–100% yield); (iii) Tf2O, DMAP, CH2Cl2, 0°Crt, 1.5 h (40–50% yield); (iv) Tl(NO3)3·3H2O, MeOH, rt, 5 min; (v) 10%
aq. HCl, rt, 40–60 min (80–95% yield); (vi) (a) LiAlH4, THF, 35°C, 3 h (95% yield), (b) DDQ, benzene, 25°C, 2 h (80% yield),
(c) H2SO4, AcOH, rt, 2.5 h (80% yield).
which is original and more efficient than the few previ-
ous syntheses of these compounds and may be suitable
for large-scale work. Optimization of this new route,
and its application to the synthesis of pharmacologi-
cally active benzo[c]phenanthridines other than faga-
ronine (6b), is now under investigation. Additionally,
we are completing a systematic study of the chemical
4. Cheng, C. C. In Progress in Medicinal Chemistry; Ellis,
G. P.; West, G. B., Eds. Structural aspects of antineo-
plastic agents—a new approach; Elsevier Science BV
(Biomedical Division): Amsterdam, 1988; Vol. 25, pp.
35–83.
5. For a recent review of benzo[c]phenanthridine synthesis,
see: Ishikawa, T; Ishii, H. Heterocycles 1999, 50, 627.
6. Onda, M.; Yamaguchi, I. Chem. Pharm. Bull. 1979, 27,
2076.
properties
of
N-ethoxycarbonyl-1-amino-1-(2-
vinylphenyl)-2-phenylethylenes 2 with a view to the
synthesis of other interesting anticancer compounds
such as benzofuronaphthoquinones, indolonaphtho-
quinones and ellipticines.14
7. Cho, W.-J.; Yoo, S.-J.; Chung, B.-H.; Whang, S.-H.;
Kim, S.-K.; Kang, B.-H.; Lee, C.-O. Arch. Pharm. Res.
1996, 19, 231.
8. Cho, W.-J.; Park, M.-J.; Chung, B.-H.; Lee, C.-O.
Bioorg. Med. Chem. Lett. 1998, 8, 41.
9. Treus, M.; Este´vez, J. C.; Castedo, L.; Este´vez, R. J.
Tetrahedron Lett. 2000, 41, 6351.
Acknowledgements
10. All new compounds gave satisfactory analytical and spec-
troscopic data. Selected physical and spectroscopic data
follow.
We thank the Ministry of Education, Culture and
Sports (DGEU) and the Xunta de Galicia for financial
support, and the latter for a grant to Mo´nica Treus.
1
Compound 3a. Mp 205–208°C (methanol). H NMR (l,
ppm, CDCl3): 3.30 (s, 3H, -NCH3), 3.90 (s, 3H, -OCH3),
3.99 (s, 3H, -OCH3), 4.00 (s, 3H, -OCH3), 4.04 (s, 3H,
-OCH3), 5.15 (d, J=11 Hz, 1H, -CꢁCH2), 5.63 (d, J=
17.5 Hz, 1H, -CꢁCH2), 6.40 (s, 1H, Ar-H), 6.46 (dd,
J=17.5 Hz, J=11 Hz, 1H, -CHꢁCH2), 6.77 (s, 1H,
Ar-H), 6.86 (s, 1H, Ar-H), 7.16 (s, 1H, Ar-H), 7.84 (s,
1H, Ar-H). MS (m/z, %): 381 (M+, 100).
References
1. (a) Shamma, M. The Isoquinoline Alkaloids: Chemistry
and Pharmacology; Academic Press: New York, 1972; (b)
Shamma, M.; Moniot, J. L. Isoquinoline Alkaloids
Research, 1972–1977; Plenum Press: New York, 1978; (c)
Guinaudeau, H.; Leboeuf, M.; Cave´, A. J. Nat. Prod.
1990, 53, 235.
2. Sima´nek, V. In The Alkaloids. Chemistry and Pharmacol-
ogy; Brossi, A., Ed. Benzophenanthridine alkaloids; Aca-
demic Press: Orlando, FL, 1985; Vol. 26, p. 229.
3. Taira, Z.; Matsumoto, M.; Ishida, S.; Icikawa, T.;
Sakiya, Y. Chem. Pharm. Bull. 1994, 42, 1556.
1
Compound 2c. Mp 119–121°C (methanol). H NMR (l,
ppm, CDCl3): 0.86 (t, J=7.1 Hz, 3H, -CH3), 1.40 (d,
J=6.1 Hz, 6H, 2×-CH3), 3.03 (s, 3H, -NCH3), 3.84–3.97
(m, 11H, 3×-OCH3+-OCH2-), 4.63 (h, J=6.1 Hz, 1H,
-CHMe2), 5.13 (dd, J=10.9 Hz, J=1.1 Hz, 1H, -CꢁCH2),
5.52 (dd, J=17.4 Hz, J=1.1 Hz, 1H, -CꢁCH2), 6.12 (s,
1H, Ar-H), 6.77 (s, 1H, Ar-H), 6.83–7.05 (m, 4H, 3×Ar-
H+-CHꢁCH2), 7.07 (s, 1H, Ar-H). MS (m/z, %): 455
(M+, 32), 310 (100).