anal. Calc. for C10H10SnS10: C, 21.1; H, 1.8; S, 56.3%. Found:
C, 20.7; H, 1.9; S, 55.4%.
21. Yield (a) 98%, (b) 55%. mp 80 ЊC. MS (LSIMSϩ):
1
m/z (%): 1223 (74, [S(AuPPh2Me)3]ϩ); 1292 (4, Mϩ). H NMR
13. Yield 14%. mp 200 ЊC. 1H NMR (300 MHz, [D6]DMSO,
25 ЊC) δ 7.29–7.27 (m, 4 H, Ph), 4.56–4.24 (m, 4 H, SCH2), 1.23
(300 MHz, CDCl3, 25 ЊC) δ 7.65–7.55 (m, 8 H, PPh2Me),
7.52–7.45 (m, 12 H, PPh2Me), 7.44 (t, 1 H, J (H–H) = 7 Hz),
7.02 (d, 2 H, J (H–H) = 7 Hz), 3.97 (s, 4 H, SCH2) and 2.12 (d,
6 H, J (P–H) = 10 Hz, CH3). 31P-{1H}NMR (300 MHz, CDCl3,
(s, 3 H, CH3) and 1.0 (s, 3 H, CH3). IR (cmϪ1) 1066, 1030 (C᎐S)
᎐
and 575, 455 (Sn–Me). Elemental anal. Calc. for C16H14S10Sn:
C, 37.2; H, 2.7; S, 24.8%. Found: C, 37.5; H, 2.9; S, 24.7%.
25 ЊC): δ 22.0 (s). IR (cmϪ1) 1059, 1023 (C᎐S). Elemental anal.
᎐
1
14. Yield 85%. mp 92 ЊC. H NMR (300 MHz, [D6]DMSO,
Calc. for C39H33NAu2P2S10 C, 36.3; H, 2.6; N, 1.1; S, 24.8%.
Found: C, 36.5; H, 2.7; N, 1.2; S, 24.5%.
25 ЊC) δ 7.29–7.16 (m, 4 H, Ph), 4.12 (s, 4 H, SCH2) and 0.9
(s, 6 H, J (Sn–H) = 114 Hz, CH3). IR (cmϪ1) 1128 (br) (C᎐S)
᎐
and 517, 441 (Sn–Me). Elemental anal. Calc. for C16H14SnS10:
C, 29.8; H, 2.2; S, 49.6 %. Found: C, 30.3; H, 2.5; S, 48.2%.
15. Yield 85%. mp 172 ЊC. 1H NMR (300 MHz, [D6]DMSO,
25 ЊC) δ 7.23 (s, 4 H, Ph), 4.10 (s, 4 H, SCH2), 0.67–1.0 (m, 6 H,
Acknowledgements
M. L., E. C. and A. M. would like to thank DGES (PB98–0542)
for financial support and Caja Inmaculada (Programa
EUROPA) for a travel grant to A. M. We thank Sheffield
Hallam University for financial support to R. B.
CH3). IR (cmϪ1) 1058, 1020 (C᎐S) and 516, 465 (Sn–Me).
᎐
Elemental anal. Calc. for C16H14SnS10: 29.8; H, 2.2; S, 49.6 %.
Found: C, 30.2; H, 2.3; S, 48.5%.
16. Yield 75%. mp 132 ЊC. 1H NMR (300 MHz, [D6]DMSO,
25 ЊC) δ 7.65 (t, 1 H, J (H,H) = 13 Hz), 7.20 (d, 2 H, J (H,H) =
13 Hz), 4.25 (s, 4 H, SCH2) and 1.30–0.60 (m, 6 H, CH3). IR
References
1 M. R. Bryce, Chem. Soc. Rev., 1991, 20, 355; Organic
Superconductors (including Fullerenes), J. M. Williams, J. R. Ferraro,
R. J. Thorn K. D. Carlson, U. Geiser, H. H. Wang, A. M. Kini and
M.-H. Whangbo, Prentice Hall, New Jersey, 1992; M. R. Bryce,
J. Mater. Chem., 1995, 5, 1481; T. Ishiguro, K. Yamaji and G. Saito,
Organic Superconductors, 2nd edn., Springer-Verlag, Berlin,
Heidelberg, 1998.
2 P. Cassoux, L. Valade, H. Kobayashi, A. Kobayashi, R. A. Clark
and A. E. Underhill, Coord. Chem. Rev., 1991, 110, 115.
3 P. Cassoux, Coord. Chem. Rev., 1999, 185–186, 213.
4 L. Valade, M. Bousseau, A. Gleizes and P. Cassoux, J. Chem. Soc.,
Chem. Commun., 1983, 110; L. Valade, J.-P. Legros, M. Bousseau,
P. Cassoux, M. Garbauskas and L. V. Interrante, J. Chem. Soc.,
Dalton Trans., 1985, 783; R. Kato, H. Kobayashi, A. Kobayashi and
Y. Sasaki, Chem. Lett., 1985, 131; H. Kim, A. Kobayashi, Y. Sasaki,
R. Kato and H. Kobayashi, Chem. Lett., 1987, 1799.
5 M. Bousseau, L. Valade, J.-P. Legros, P. Cassoux, M. Garbauskas
and L. V. Interrante, J. Am. Chem. Soc., 1986, 108, 1908.
6 L. Brossard, M. Ribault, M. Bousseau, L. Valade and P. Cassoux,
C. R. Acad. Sci., Ser. II, 1986, 302, 205.
7 L. Brossard, H. Hurdequint, M. Ribault, L. Valade, J.-P. Legros and
P. Cassoux, Synth. Met., 1988, 27, B157.
8 L. Brossard, M. Ribault, L. Valade and P. Cassoux, J. Phys. (Paris),
1989, 50, 1521.
9 H. Tajima, M. Inokuchi, A. Kobayashi, T. Ohta, R. Kato,
H. Kobayashi and H. Kuroda, Chem. Lett., 1993, 1235.
10 Preliminary communication: R. Berridge, N. Bricklebank, D. W.
Allen, P. J. Skabara, K. M. A. Malik, S. J. Coles and M. B.
Hursthouse, Synth. Met., 2001, 120, 1023.
(cmϪ1) 1060, 1020 (C᎐S) and 573, 465 (Sn–Me). Elemental anal.
᎐
Calc. for C15H13NSnS10 C, 27.4; H, 2.2; N, 1.8; S, 48.3%. Found:
C, 27.9; H, 2.1; N, 2.2; S, 49.6%.
General procedure for the synthesis of gold derivatives 17–21
[Au2(dmit–bridge–dmit)(PPh2Me)2]. Method (a). To a suspen-
sion of the corresponding protected dithiolate 6–10 (0.1 mmol)
in ethanol (10 ml) was added a solution of NaOEt (4 ml, 0.1 M,
0.4 mmol;) with stirring and cooling using an ice-bath, followed
by [AuCl(PPh2Me)] (0.0864 g, 0.2 mmol). After stirring for
6 hours, the yellow solids obtained were filtered off, washed
with ethanol and dried in vacuo.
Method (b). To a suspension of the corresponding tin
derivative 12–16 (0.1 mmol) in ethanol (10 ml), cooled by an
ice-bath, was added [AuCl(PPh2Me)] (0.0864 g, 0.2 mmol).
After stirring overnight, the yellow solids obtained were filtered
off, washed with ethanol and dried in vacuo.
17. Yield (a) 95%, (b) 72%. mp 87 ЊC. MS (LSIMSϩ):
1
m/z (%): 1215 (5, Mϩ), 1223 (20, [S(AuPPh2Me)3]ϩ). H NMR
(300 MHz, CDCl3, 25 ЊC) δ 7.65–7.59 (m, 8 H, Ph), 7.57–7.49
(m, 12 H, Ph), 2.99 (s, 4 H, SCH2CH2S) and 2.14 (d, 6 H,
J (P–H) = 10 Hz, CH3). 31P-{1H}NMR (300 MHz, CDCl3,
25 ЊC): δ 22.1 (s). IR (cmϪ1) 1058, 1020 (C᎐S). Elemental
᎐
anal. Calc. for C34H30Au2P2S10 C, 33.6; H, 2.5; S, 26.4%. Found:
C, 33.7; H, 2.5; S, 26.1%.
11 M. R. Bryce, J. Mater. Chem., 2000, 10, 589.
12 N. Svenstrup, K. M. Rasmussen, T. K. Hansen and J. Becher,
Synthesis, 1994, 809.
18. Yield 98%, method (a). mp 95 ЊC. MS (LSIMSϩ):
1
m/z (%): 1292 (3, Mϩ), 1223 (10, [S(AuPPh2Me)3]ϩ). H NMR
13 The X-ray crystal structure of 6a has already been reported in
(300 MHz, CDCl3, 25 ЊC) δ 7.63–7.56 (m, 8 H, PPh2Me), 7.46–
7.30 (m, 12 H, PPh2Me), 7.16–7.11 (m, 2H), 7.10–7.08 (m, 2 H),
4.20 (s, 4 H, SCH2) and 2.07 (d, 6 H, J (P–H) = 10 Hz, CH3).
ref. 10; CCDC reference number 147053.
14 F. A. Cotton, G. Wilkinson, C. A. Murillo and M. Bochmann,
Advanced Inorganic Chemistry, 6th edn., Wiley-Interscience,
Chichester, 1999.
15 A. J. Blake, J. Casabo, F. A. Devillanova, L. Escriche, A. Garau,
F. Isaia, V. Lippolis, R. Kivekas, V. Muns, M. Schröder, R. Sillanpaa
and G. Verani, J. Chem. Soc., Dalton Trans., 1999, 1085.
16 M. Cha, C. L. Gatlin, S. C. Critchlow and J. A. Kovacs, Inorg.
Chem., 1993, 32, 5868.
17 D. Sellman, H. Schillinger and F. Knock, Z. Naturforsch., Teil B,
1992, 47, 645.
18 R. Vicente, J. Ribas, X. Solans, M. Font, A. Mari, P. de Loth and
P. Cassoux, Inorg. Chim. Acta, 1987, 132, 229.
31P-{1H}NMR (300 MHz, CDCl3, 25 ЊC): δ 21.9 (s). IR (cmϪ1
)
1057, 1020 (C᎐S). Elemental anal. Calc. for C H Au P S
᎐
40 34
2
2
10
C, 37.2; H, 2.7; S, 24.8%. Found: C, 37.5; H, 2.8; S, 24.4%.
19. Yield 98%, method (a). mp 82 ЊC. MS (LSIMSϩ):
m/z (%): 1223 (32, [S(AuPPh2Me)3]ϩ). 1H NMR (300 MHz,
CDCl3, 25 ЊC) δ 7.68–7.61 (m, 8 H, PPh2Me), 7.53–7.42 (m,
12 H, PPh2Me), 7.26–7.22 (m, 2 H), 7.22–7.13 (m, 2 H),
4.13–3.9 (s, 4 H, SCH2) and 2.12 (d, 6 H, J (P–H) = 10 Hz,
CH3). 31P-{1H}NMR (300 MHz, CDCl3, 25 ЊC): δ 21.7 (s).
IR (cmϪ1) 1058, 1022 (C᎐S). Elemental anal. Calc. for C H -
19 E. Cerrada, S. Elipe, M. Laguna, F. Lahoz and A. Moreno, Synth.
Met., 1999, 102, 1759.
᎐
40 34
Au2P2S10 C, 37.2; H, 2.7; S, 24.8%. Found: C, 37.1; H, 2.7;
S, 25.1%.
20 E. Cerrada, E. J. Fernández, M. C. Gimeno, A. Laguna, M. Laguna,
R. Terroba and M. D. Villacampa, J. Organomet. Chem., 1995,
492, 105; E. Cerrada, E. J. Fernández, P. G. Jones, A. Laguna,
M. Laguna and R. Terroba, Organometallics, 1995, 14, 5537;
E. Cerrada, M. Laguna and P. A. Sorolla, Polyhedron, 1997, 17,
295.
21 E. Cerrada, P. G. Jones, A. Laguna and M. Laguna, Inorg. Chem.,
1996, 35, 2995.
22 G. Steimecke, R. Kirmse and E. Hoyer, Z. Chem., 1975, 15, 28.
23 R. Usón and A. Laguna, Organomet. Synth., 1985, 3, 325.
24 J. Chatt and G. Booth, J. Chem. Soc., 1965, 3238.
20. Yield (a) 98%, (b) 50%. mp 95 ЊC. MS (LSIMSϩ):
m/z (%): 1223 (44, [S(AuPPh2Me)3]ϩ). 1H NMR (300 MHz,
CDCl3, 25 ЊC) δ 7.64–7.57 (m, 8 H, PPh2Me), 7.49–7.48 (m,
12 H, PPh2Me), 7.25–7.12 (m, 2 H), 7.01 (s, 2 H), 3.90 (s, 4 H,
SCH2) and 2.08 (d, 6 H, J 10 Hz, CH3). 31P-{1H}NMR
(300 MHz, CDCl3, 25 ЊC): δ 22.1 (s). IR (cmϪ1) 1055, 1022
(C᎐S). Elemental anal. Calc. for C H Au P S10 C, 37.2; H, 2.7;
᎐
40 34
2
2
S, 24.8%. Found: C, 37.3; H, 2.8; S, 24.6%.
J. Chem. Soc., Dalton Trans., 2002, 2654–2659
2659