7160
V. Parchinsky et al. / Tetrahedron Letters 52 (2011) 7157–7160
Ramesh, K.; Narayana Kumar, G. G. K. S.; Gree, R. Tetrahedron Lett. 2010, 51,
1578–1581; (k) Subba Reddy, B. V.; Borkar, P.; Pawan Chakravarthy, P.; Yadav,
J. S.; Gree, R. Tetrahedron Lett. 2010, 51, 3412–3416; (l) Subba Reddy, B. V.;
Ramesh, K.; Ganesh, A. V.; Narayana Kumar, G. G. S. K.; Yadav, J. S.; Gree, R.
Tetrahedron Lett. 2011, 52, 495–498.
was evaporated to dryness, the residue dissolved in anhydrous 1,4-
dioxane (5 mL) and transferred into a microwave reactor tube.
BF3ÁOEt2 (1.0 equiv) was added, the reaction tube was capped with
a septum and irradiated using a Biotage Initiator™ microwave
reactor at 180 °C for 1 h. The solvent was evaporated and the res-
idue was partitioned between CHCl3 (10 mL) and 1 M aqueous
NaOH solution. The organic layer was separated, dried over anhy-
drous MgSO4, filtered, concentrated, and chromatographed on sil-
ica gel using an appropriate gradient of MeOH in CH2Cl2 as
eluent. Fractions containing 2 (as verified by LC–MS analysis) were
combined and concentrated in vacuo to give a viscous oil. This was
dissolved in a minimum amount of 1,4-dioxane and treated with
excess 4 M HCl in 1,4-dioxane. The resulting white crystalline pre-
cipitate was collected by filtration, washed with 1,4-dioxane and
air-dried to provide analytically pure 3.
3. (a) Dobbs, A. P.; Guesne, S. J. J.; Hursthouse, M. B.; Coles, S. J. Synlett 2003,
1740–1742; (b) Dobbs, A. P.; Guesne, S. J. J. Synlett 2005, 2101–2103; (c) Dobbs,
A. P.; Parker, R. J.; Skidmore, J. Tetrahedron Lett. 2008, 49, 827–831.
4. Dobbs, A. P.; Guesne, S. J. J.; Parker, R. J.; Skidmore, J.; Stephenson, R. A.;
Hursthouse, M. B. Org. Biomol. Chem. 2010, 8, 1064–1080.
5. Altman, R. A.; Nilsson, B. L.; Overman, L. E.; de Alaniz, J. R.; Rohde, J. M.; Taupin,
V. J. Org. Chem. 2010, 75, 7519–7534.
6. Cheng, X.; Waters, S. Org. Lett. 2010, 12, 205–207.
7. Barbe, G.; Fiset, D.; Charette, A. B. J. Org. Chem. 2011, 76, 5354–5362.
8. Petrov, A. A.; Sapozhnikova, A. F. Zh. Obshch. Khim. 1948, 18, 424–429.
9. Characterization data for selected compounds: 3d: 1H NMR (400 MHz, 90 °C,
DMSO-d6) d 10.60 (d, J = 11.0 Hz, 1H), 8.54 (d, J = 11.6 Hz, 1H), 7.45 (ABq,
J = 10.9 Hz, 4H), 5.60 (s, 1H), 4.55 (d, J = 15.9 Hz, 1H), 3.13–3.38 (m, 3H), 2.33 (s,
2H), 2.20 (s, 1H), 2.09 (d, J = 16.0 Hz, 1H), 1.70 (d, J = 16.0 Hz, 1H), 0.98 (s, 3H);
13C NMR (100 MHz, 90 °C, DMSO-d6) d 135.6, 132.3, 129.9, 127.6, 127.5, 126.8,
59.5, 39.0, 29.6, 29.4, 23.2, 23.1; LC–MS (MÀCl) m/z 248.3. Anal. Calcd for
C
15H19Cl2N: C, 63.39; H, 6.74; N, 4.93; found: C, 63.42; H, 6.78; N, 4.99; 3e: 1H
Acknowledgment
NMR (400 MHz, 90 °C, DMSO-d6) d 10.61 (br s, 1H), 8.47 (br s, 1H), 7.95 (d,
J = 10.7 Hz, 2H), 7.65 (d, J = 10.7 Hz, 2H), 5.65 (s, 1H), 4.61 (s, 1H), 3.87 (s, 3H),
3.09–3.35 (m, 3H), 2.20–2.40 (m, 3H), 2.12 (d, J = 16.6 Hz, 1H), 1.76 (d,
J = 16.6 Hz, 1H), 0.95 (s, 3H); 13C NMR (100 MHz, 90 °C, DMSO-d6) d 165.5,
142.0, 130.1, 129.0, 128.5, 127.0, 126.0, 59.8, 51.4, 50.5, 39.0, 29.7, 23.2, 23.1;
LC–MS (MÀCl) m/z 272.6. Anal. Calcd for C17H22ClNO2: C, 66.33; H, 7.20; N,
4.55; found: C, 66.40; H, 7.27; N, 4.61; 3i: 1H NMR (400 MHz, 90 °C, DMSO-d6) d
10.46 (br s, 1H), 8.52 (br s, 1H), 7.47 (m, 2H), 7.29–7.37 (m, 3H), 5.58 (s, 1H),
4.52 (d, J = 15.1 Hz, 1H), 3.14–3.38 (m, 3H), 2.34 (br s, 2H), 2.18 (s, 1H), 2.10 (d,
J = 15.8 Hz, 1H), 1.70 (d, J = 15.8 Hz, 1H), 0.91 (s, 3H); 13C NMR (100 MHz, 90 °C,
DMSO-d6) d 137.2, 130.7, 128.1, 127.5, 126.9, 125.9, 60.1, 50.6, 29.9, 29.7, 23.9,
23.5; LC–MS (MÀCl) m/z 214.5. Anal. Calcd for C15H20ClN: C, 72.13; H, 8.07; N,
14.19; found: C, 72.02; H, 8.08; N, 14.09.
This research was supported by the Federal Agency for Science
and Innovation (Russian Federation Government Contract
02.740.11.0092).
References and notes
1. Olier, C.; Kaafarani, M.; Gastaldi, S.; Bertrand, M. P. Tetrahedron 2010, 66, 423–
445.
2. (a) Carballo, R. M.; Ramirez, M. A.; Rodriguez, M. L.; Martin, V. S.; Pardon, J. I.
Org. Lett. 2006, 8, 3837–3840; (b) Murty, M. S. R.; Ram, K. R.; Yadav, J. S.
Tetrahedron Lett. 2008, 49, 1141–1145; (c) Yadav, J. S.; Subba Reddy, B. V.;
Chaya, D. N.; Narayana Kumar, G. G. K. S.; Aravind, S.; Kunwar, A. C.; Madavi, C.
Tetrahedron Lett. 2008, 49, 3330–3334; (d) Miranda, P. O.; Carballo, R. M.;
Martin, V. S.; Padron, J. I. Org. Lett. 2009, 11, 357–360; (e) Yadav, J. S.; Subba
Reddy, B. V.; Chaya, D. N.; Narayana Kumar, G. G. K. S.; Naresh, P.; Jagadeesh, B.
Tetrahedron Lett. 2009, 50, 1799–1802; (f) Silva, L. F., Jr.; Quintiliano, S. A.
Tetrahedron Lett. 2009, 50, 2256–2260; (g) Carballo, R. M.; Valdomir, G.; Purino,
M.; Martin, V. S.; Padron, J. I. Eur. J. Org. Chem. 2010, 12, 2304–2313; (h) Sabitha,
G.; Das, S. K.; Srinivas, R.; Yadav, J. S. Helv. Chim. Acta 2010, 93, 2023–2025; (i)
Yadav, J. S.; Subba Reddy, B. V.; Ramesh, K.; Narayana Kumar, G. G. K. S.; Gree,
R. Tetrahedron Lett. 2010, 51, 818–821; (j) Yadav, J. S.; Subba Reddy, B. V.;
10. (a) Delpech, B.; Khuong-Huu, Q. J. Org. Chem. 1978, 43, 4898–4900; (b)
Pancrazi, A.; Kabore, I.; Delpech, B.; Khuong-Huu, Q. Tetrahedron Lett. 1979, 20,
3729–3730.
11. Parchinsky, V.; Shumsky, A.; Krasavin, M. Tetrahedron Lett. 2011, 52, 7161–
7163.
12. Coe, J. W.; Vetelino, M. G.; Bashore, C. G.; Wirtz, M. C.; Brooks, P. R.; Arnold, E.
P.; Lebel, L. A.; Fox, C. B.; Sands, S. B.; Davis, T. I.; Schulz, D. W.; Rollema, H.;
Tingley, F. D., III; O’Neill, B. T. Bioorg. Med. Chem. Lett. 2005, 15, 2974–2979.
13. Varlamov, A. V.; Sidorenko, N. V.; Zubkov, F. I.; Chernyshev, A. I. Khim.
Geterotsikl. Soedin. 2002, 79, 556–566.
14. Ilyin, A.; Kysil, V.; Krasavin, M.; Kurashvili, I.; Ivachtchenko, A. V. J. Org. Chem.
2006, 71, 9544–9547.