C1-C38 fragment possesses a potency similar to the natural
product.3a Our group has successfully synthesized segments
of halichondrin B including C1-C15, C20-C36, and C37-
C54.4 Herein we would like to report our synthesis of the
C14-C22 portion of halichondrin B, comprising the F-ring
of the natural product.
because they are less substrate-limited. Chiral palladium
reagents have been used extensively in desymmetrization
reactions.7 We present herein the further development and
application of this tactic, which leads to a better understand-
ing of the transition state of Pd/DPPBA8-catalyzed allylation
reactions.
Retrosynthetically (Scheme 1), the F-ring of halichondrin
B is viewed as a bridge between the C1-C13 and C23-
Two-directional synthesis by simultaneous chain homolo-
gation and terminus differentiation5 has been one of our main
strategies in the synthesis of complex natural products.6 It
offers not only intrinsic efficiency in skeleton synthesis but
also the possibility of higher enantio- and diastereoselectivity.
One possibility involves the synthesis of a meso symmetric
intermediate. Differentiation of the termini can be simplified
as a result of the fact that the two ends are enantiotopic. Of
the methods commonly employed in the desymmetrization,
enzymatic or chemical, the latter have the obvious advantage
Scheme 1. Retrosynthetic Analysis
(2) For biological activities, see: (a) Hamel, E. H. Pharmacol. Ther.
1992, 55, 31. (b) Bai, R.; Paull, K. D.; Herald, C. L.; Malspeis, L.; Pettit,
G. R.; Hamel, E. J. Biol. Chem. 1991, 266, 15882. (c) Luduena, R. F.;
Roach, M. C.; Prasad, V.; Pettit, G. R. Biochem. Pharmacol. 1993, 45,
421. (d) Pettit, G. R. Pure Appl. Chem. 1994, 66, 2271.
(3) For synthesis of halichondrin B, see: (a) Stamos, D. P.; Chen, S. S.;
Kishi, Y. J. Org. Chem. 1997, 62, 7552. (b) Kishi, Y.; Fang, F. G.; Forsyth,
C. J.; Scola, P. M.; Yoon, S. K. U.S. Patent 5,436,238, 1995. (c) Wang,
Y.; Habgood, G. J.; Christ, W. J.; Kishi, Y.; Littlefield, B. A.; Yu, M. J.
Bioorg. Med. Chem. Lett. 2000, 10, 1029. (d) Towle, M. J.; Salvato, K. A.;
Budrow, J.; Wels, B. F.; Kuznetsov, G.; Aalfs, K. K.; Welch, S.; Zheng,
W.; Seletsky, B. M.; Palme, M. H.; Habgood, G. J.; Singer, L. A.; DiPietro,
L. V.; Wang, Y.; Chen, J. J.; Quincy, D. A.; Davis, A.; Yoshimatsu, K.;
Kishi, Y.; Yu, M. J.; Littlefield, B. A. Cancer Res. 2001, 61, 1013. (e)
Aicher, T. D.; Kishi, Y. Tetrahedron Lett. 1987, 28, 3463. (f) Aicher, T.
D.; Buszek, K. R.; Fang, F. G.; Forsyth, C. J.; Jung, S. H.; Kishi, Y.; Scola,
P. M. Tetrahedron Lett. 1992, 33, 1549-1552. (g) Buszek, K. R.; Fang, F.
G.; Forsyth, C. J.; Jung, S. H.; Kishi, Y. Tetrahedron Lett. 1992, 33, 1553-
1556. (h) Duan, J. J. W.; Kishi, Y. Tetrahedron Lett. 1993, 34, 7541-
7544. (i) Fang, F. G.; Kishi, Y.; Matelich, M. C.; Scola, P. M. Tetrahedron
Lett. 1992, 33, 1557-1560. (j) Stamos, D. P.; Kishi, Y. Tetrahedron Lett.
1996, 37, 8643-8646. (k) Aicher, T. D.; Buszek, K. R.; Fang, F. G.; Forsyth,
C. J.; Jung, S. H.; Kishi, Y.; Matelich, M. C.; Scola, P. M.; Spero, D. M.;
Yoon, S. K. J. Am. Chem. Soc. 1992, 114, 3162-3164. (l) Kim, S.; Salomon,
R. G. Tetrahedron Lett. 1989, 30, 6279. (m) Cooper, A. J.; Salomon, R. G.
Tetrahedron Lett. 1990, 31, 3813-3816. (n) DiFranco, E.; Ravikumar, V.
T.; Salomon, R. G. Tetrahedron Lett. 1993, 34, 3247. (o) Cooper, A. J.;
Pan, W.; Salomon, R. G. Tetrahedron Lett. 1993, 34, 8193-8196. (p) Horita,
K.; Hachiya, S.; Nagasawa, M.; Hikota, M.; Yonemitsu, O. Synlett 1994,
38-40. (q) Horita, K.; Nagasawa, M.; Hachiya, S.; Yonemitsu, O. Synlett
1994, 40-43. (r) Horita, K.; Sakurai, Y.; Nagasawa, M.; Hachiya, S.;
Yonemitsu, O. Synlett 1994, 43-45. (s) Horita, K.; Sakurai, Y.; Nagasawa,
M.; Maeno, K.; Hachiya, S.; Yonemitsu, O. Synlett 1994, 46-48. (t) Horita,
K.; Hachiya, S.; Ogihara, K.; Yoshida, Y.; Nagasawa, M.; Yonemitsu, O.
Heterocycles 1996, 42, 99-104. (u) Horita, K.; Nagasawa, M.; Hachiya,
S.; Sakurai, Y.; Yamazaki, T.; Uenishi, J.; Yonemitsu, O. Tetrahedron Lett.
1997, 38, 8965. (v) Horita, K.; Sakurai, Y.; Nagasawa, M.; Yonemitsu, O.
Chem. Pharm. Bull. 1997, 45, 1558-1572. (w) Horita, K.; Hachiya, S.;
Yamazaki, T.; Naitou, T.; Uenishi, J.; Yonemitsu, O. Chem. Pharm. Bull.
1997, 45, 1265-1281.
C36 subunits of the molecule. Given the success observed
in selectively accessing the (trans, threo, trans)- and (cis,
threo, cis)-bis(tetrahydrofuran) annonaceous acetogenin core
structures via DPPBA-mediated π-allyl palladium cycliza-
tion,9 we evaluated structure 1 in relation to that chemistry.
There exists an element of hidden meso or C2 symmetry
about C18 in 2a and 2b, respectively, in that the flanking
stereocenters (see 2a) at C17 and C19 are oppositely
configured and have three carbon extensions (C16-C14 and
C20-C22, respectively). We recognized the possibility of a
palladium-mediated, DPPBA-controlled desymmetrization
reaction to set the desired stereochemistries. It was envisioned
that the meso diol bis(allylic acetate) 3, which should be
accessible from cis-1,4-diacetoxy-2-cyclopentene, would only
undergo monocyclization and that the biscyclization product
would be too strained to form. According to the model
proposed by Trost and Toste, the C20 stereochemistry would
be controlled via one of the (R,R)-DPPBA π-allyl palladium
intermediates shown (Figure 2). Less obvious was which of
the two hydroxyl/distal allyl acetate pairs would be reactive.
Although the allyl acetate groups in meso 3 are enantiotopic,
involvement of the chiral ligand renders the two π-allyl
complexes in Figure 2 diastereomeric. We reasoned (incor-
rectly, vide infra) that there are two factors that favor the
transition state labeled Chelation: (1) a potentially favorable
interaction between palladium and adjacent free hydroxyl
in the Chelation Model; (2) the unfavorable steric interaction
between the palladium π-allyl complex and the spectator allyl
acetate chain in the Non-chelation model.
(4) (a) Burke S. D.; Jung, K. W.; Philips, J. R.; Perri, R. E. Tetrahedron
Lett. 1994, 35, 703. (b) Burke S. D.; Jung, K. W.; Lambert, W. T.; Philips,
J. R.; Klovning, J. J. J. Org. Chem. 2000, 65, 4070. (c) Burke, S. D.;
Buchanan, J. L.; Rovin, J. D. Tetrahedron Lett. 1991, 32, 3961-3964. (d)
Burke S. D.; Zhang, G.; Buchanan, J. L. Tetrahedron Lett. 1995, 36, 7023.
(e) Burke S. D.; Philips, J. R.; Quinn, K. J.; Zhang, G.; Jung, K. W.;
Buchanan, J. L.; Perri, R. E. In Anti-infectiVes: Recent AdVances in
Chemistry and Structure-ActiVity Relationships; Bentley, P. H., O’Hanlon,
P. J., Eds.; Royal Society of Chemistry: Cambridge, 1997; p 73. (e) Burke
S. D.; Quinn, K. J.; Chen, V. J. J. Org. Chem. 1998, 63, 8626-8627. (f)
Burke, S. D.; Austad, B. C.; Hart, A. C. J. Org. Chem. 1998, 63, 6770-
6771. (g) Austad, B. C.; Hart, A. C.; Burke, S. D. Tetrahedron 2002, 58,
2011.
(5) (a) Poss, C. S.; Schreiber, S. L. Acc. Chem. Res. 1994, 27, 9-17.
(7) (a) Trost, B. M.; Van Vranken, D. L. Chem. ReV. 1996, 96, 395. (b)
Trost, B. M.; Dudash, Jr. J.; Hembre, E. J. Chem. Eur. J. 2001, 7, 1619.
(8) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 1999, 121, 4545-
4554.
(b) Magnuson, S. R. Tetrahedron 1995, 51, 2167-2213.
(6) (a) Burke, S. D.; Buchanan, J. L.; Rovin, J. D. Tetrahedron Lett.
1991, 32, 3961-3964. (b) Burke, S. D.; Quinn, K. J.; Chen, V. J. J. Org.
Chem. 1998, 63, 8626-8627.
(9) Burke, S. D.; Jiang, L. Org. Lett. 2001, 3, 1953-1955.
3412
Org. Lett., Vol. 4, No. 20, 2002