832 Bull. Chem. Soc. Jpn., 74, No. 5 (2001)
Dual Photochromism of 2-Hydroxychalcones
4
R. Matsushima, K. Miyakawa, and M. Nishihata, Chem.
charge transfer character in the excited states, by either struc-
tural or solvent polarity changes, tends to enhance the fluores-
cence efficiency: thus, the fluorescence quantum yields (φf) of
chalcones 1, 2, and 3 were 0.091 (λF 520 nm), 0.15 (535 nm),
and 0.22 (515 nm), respectively, on excitation at 405 nm in t-
butyl alcohol. The φf value of chalcone 3 varied with solvent:
0.25 in N,N-dimethylformamide, 0.13 in THF, 0.076 in etha-
nol, 0.014 in methanol, and 0.03 in diethyl ether. Strong
charge transfer interaction between the amino and carbonyl
groups would help to retain the planarity of the cinnamoyl
moiety, thus depressing the radiationless deactivation via
twisting motions. While φf values are usually low in ethanol
and methanol, relatively high values are obtained in t-butyl al-
cohol, whose viscosity is sufficiently high to retard the twisting
motions of the chromophores.
In summary, 4-dialkylamino-2-hydroxychalcones undergo
reversible photochemical E/Z isomerization in neutral aprotic
solvents but not in neutral protic solvents, while they are sig-
nificantly fluorescent in some polar and protic solvents. The
photo-Z-isomers, which exhibit significantly red-shifted ab-
sorption bands, are converted to the blue-colored flavylium
ions in competition with reversion to the E-isomers upon addi-
tion of small amounts of acid. In aqueous ethanol solution at
pH around 6, photochemical chalcone → flavylium conversion
and thermal reversion can be repeated with low rates.
Lett., 1988, 1915.
5
R. Matsushima, H. Mizuno, and A. Kajiura, Bull. Chem.
Soc. Jpn., 67, 1762 (1994).
6
R. Matsushima and M. Suzuki, Bull. Chem. Soc. Jpn., 65,
39 (1992).
7
R. Matsushima, H. Mizuno, and H. Itoh, J. Photochem.
Photobiol. A: Chemistry, 89, 251 (1995).
8
R. Matsushima, N. Suzuki, T. Murakami, and M. Morioka,
J. Photochem. Photobiol. A: Chemistry, 109, 91 (1997).
R. Matsushima and K. Kato, Bull. Chem. Soc. Jpn., 73
9
(2000), in press.
10 K. Kato, S. Fujimoto, M. Morioka, and R. Matsushima,
Symposium on Photochemistry 1999, Okayama, 1999, Abstr., p.
49.
11 R. Matsushima, S. Fujimoto, and K. Kato, 4th International
Symposium on Functional Dyes, Osaka, 1999, Abstr., p. 75.
12 H. Horiuchi, A. Yokawa, T. Okutsu, and H. Hiratsuka, Bull.
Chem. Soc. Jpn., 72, 2429 (1999).
13 H. Horiuchi, H. Shirase, T. Okutsu, R. Matsushima, and H.
Hiratsuka, Chem. Lett., 2000, 96.
14 C. A. Parker, “Photoluminescence of Solutions,” Elsevier,
New York (1968) pp. 261–268.
15 C. A. Parker, Proc. Roy. Soc. London, A, 220, 104 (1953).
16 G. Gauglits, “Photochromism,” ed by H. Durr and H.
Bouas-Laurent, Elsevier, Oxford (1990), pp. 883–902.
17 C. Michaelidis and R. Wizinger, Helv. Chim. Acta, 34,
1761 (1951).
18 S. Janos, G. Miklos, and K. Ferenc, Acta. Pharm. Hung.,
46, 49 (1976).
References
19 R. Matsushima, A. Ogiue, and S. Fujimoto, Chem. Lett.,
2000, 590.
20 J. J. P. Stewart, Comput. Chem., 10, 209 (1989); A. Klamt
and G. Schurmann, J. Chem. Soc., Perkin Trans. 2, 1993, 799.
21 H. Kihara and S. Tokita, “PPP-PC: Kinousei-shikiso no
Bunshisekkei,” Maruzen (1989).
1
(1991).
2
T. Goto and T. Kondo, Angew. Chem., Int. Ed. Engl., 30, 17
C. H. Eugster and E. M. Fisher, Angew. Chem., Int. Ed. En-
gl., 30, 654 (1991).
3
K. Yoshida, T. Kondo, Y. Okazaki, and K. Kato, Nature,
373, 291 (1995).