3 (a) C. Aitken, J. F. Harrod, A. Malek and E. Samuel, J. Organomet.
Chem., 1988, 349, 285; (b) K. Mochida and H. Chiba, J. Organomet.
Chem., 1994, 473, 45; (c) For a demethanative coupling route, see:
S. M. Katz, J. A. Reichl and D. H. Berry, J. Am. Chem. Soc., 1998,
120, 9844.
4 (a) T. Imori and T. D. Tilley, J. Chem. Soc., Chem. Commun., 1993,
1607; (b) T. Imori, V. Lu, H. Cai and T. D. Tilley, J. Am. Chem. Soc.,
1995, 117, 9931; (c) J. R. Babcock and L. R. Sita, J. Am. Chem. Soc.,
1996, 118, 12481.
5 (a) N. Etkin, M. C. Fermin and D. W. Stephan, J. Am. Chem. Soc.,
1997, 119, 2954; (b) V. P. W. Böhm and M. Brookhart, Angew.
Chem., Int. Ed., 2001, 40, 4694.
6 J. M. Fischer, W. E. Piers, S. D. Pearce Batchilder and M. J.
Zaworotko, J. Am. Chem. Soc., 1996, 118, 283.
colorless liquid gradually became pale yellow and eventually
solidified to give a glassy residue 8 (1.52 g, 79% yield based on
the amount of Mes*OH isolated). Mes*OH (3.03 g, ∼ 0.9 mole
equivalents) was also recovered and characterized by 1H NMR
spectroscopy. Compound 8 was found to be highly soluble in
chlorinated solvents, THF, toluene and sparingly soluble in
hexanes. 1H NMR (CDCl3): δ 0.5–1.5 (br, BH2), 1.32, 1.34 and
1.48 (t-Bu, Mes*O), 6.8–7.6 (br, Ph). 31P{1H} NMR (CDCl3):
many signals from δ Ϫ120 to 100. 11B{1H} NMR (CDCl3):
δ Ϫ30 (very broad). 13C{1H} NMR (CDCl3): δ 30.9, 32.0, 32.2,
33.0, 35.0 and 36.5 (t-Bu, Mes*O), 122.0, 124.2, 127.5–129 (many
signals), 133.1, 133.8, 134.0 and 135.0 (aromatic, Mes*O).
7 R. Shu, L. Hao, J. F. Harrod, H.-G. Woo and E. Samuel, J. Am.
Chem. Soc., 1998, 120, 12988.
8 J. He, H. Q. Liu, J. F. Harrod and R. Hynes, Organometallics, 1994,
13, 336.
9 (a) Y. Li and Y. Kawakami, Macromolecules, 1999, 32, 6871; (b) R.
Zhang, J. E. Mark and A. R. Pinhas, Macromolecules, 2000, 33, 3508.
10 C. A. Jaska, K. Temple, A. J. Lough and I. Manners, Chem.
Commun., 2001, 962.
11 H. Dorn, R. A. Singh, J. A. Massey, A. J. Lough and I. Manners,
Angew. Chem., Int. Ed., 1999, 38, 3321.
12 H. Dorn, R. A. Singh, J. A. Massey, J. M. Nelson, C. A. Jaska, A. J.
Lough and I. Manners, J. Am. Chem. Soc., 2000, 122, 6669.
13 H. Dorn, E. Vejzovic, A. J. Lough and I. Manners, Inorg. Chem.,
2001, 40, 4327.
14 H. Dorn, C. A. Jaska, R. A. Singh, A. J. Lough and I. Manners,
Chem. Commun., 2000, 1041.
15 For a review on inorganic polymers, see: I. Manners, Angew. Chem.,
Int. Ed. Engl., 1996, 35, 1602.
16 L. F. Centofanti, Inorg. Chem., 1973, 12, 1131.
Thermolysis of 5 and 6: P–B bond cleavage without phenol
formation. Adducts 5 and 6 were heated for extended periods of
time under nitrogen, and the reaction progress was followed by
31P{1H} NMR. Representative examples are described below.
A sample of 5 was heated to 160 ЊC for 7 d. Analysis of the
remaining solid indicated complete dissociation of 5 [31P{1H}
NMR: δ 111 (s)] into the free phosphinite 4 [31P{1H} NMR:
1
δ 127 (s)] and volatile diborane (by inference). The H NMR
spectrum consisted exclusively of resonances attributed to the
formation of 4. Similar results were obtained when the experi-
ment was repeated in the presence of ca. 5 mol% [{Rh(µ-Cl)-
(1,5-cod)}2].
A sample of 6 was heated to 140 ЊC for 8 d. Analysis of the
remaining pale beige oil indicated complete dissociation of 6
[31P{1H} NMR: δ 108 (pseudo-quartet)] into the free phosphite,
(PhO)3P [31P{1H} NMR: δ 129 (s)], and presumably volatile
diborane. The 1H NMR spectrum consisted exclusively of
resonances attributed to the formation of (PhO)3P. Thermolysis
experiments in tetraglyme (140 ЊC) and in the presence of ca.
5 mol% [{Rh(µ-Cl)(1,5-cod)}2] yielded similar results after 5 d.
17 (a) D. S. Bohle, G. R. Clark, C. E. F. Rickard and W. R. Roper,
J. Organomet. Chem., 1990, 393, 243 . For related examples, see;
(b) G. Huttner and H.-D. Müller, Angew. Chem., Int. Ed. Engl.,
1975, 14, 571; (c) A. Marinetti and F. Mathey, Organometallics,
1982, 1, 1488; (d ) A. Marinetti, F. Mathey, J. Fischer and A.
Mitschler, J. Am. Chem. Soc., 1982, 104, 4484.
18 R. A. Bartlett, H. V. Rasika Dias, K. M. Flynn, M. M. Olmstead
and P. P. Power, J. Am. Chem. Soc., 1987, 109, 5699.
Single-crystal X-ray structural determination of 1, 3, 5 and 6.
Diffraction data were collected on a Nonius Kappa-CCD dif-
fractometer using graphite-monochromated Mo-Kα radiation
(λ = 0.71073 Å). A combination of 1Њ ꢀ and ω (with κ offsets)
scans were used to collect sufficient data. The data frames were
integrated and scaled using the Denzo-SMN package.33 The
structures were solved and refined with the SHELXTL-PC v5.1
software package.34 Refinement was by full-matrix least squares
on F 2 using all data (including negative intensities). In all struc-
tures, hydrogen atoms bonded to carbon atoms were included
in calculated positions and treated as riding atoms. The dis-
order within the para t-Bu-groups in 1 were modeled with an
87/13 occupancy. Data collection and refinement parameters
are summarized in Table 2.
19 R. W. Rudolph and R. W. Parry, J. Am. Chem. Soc., 1967, 89, 1621.
20 H. Nöth and B. Wrackmeyer, Nuclear Magnetic Resonance
Spectroscopy of Boron Compounds; Springer, Berlin, 1978.
21 (a) S. Jugé, M. Stephan, J.-P. Genet, S. Halut-Desportes and S.
Jeannin, Acta Crystallogr., Sect. C, 1990, 46, 1869; (b) T. Imamoto,
T. Yoshizawa, K. Hirose, Y. Wada, H. Masuda, K. Yamaguchi
and H. Seki, Heteroatom. Chem., 1995, 6, 99; (c) A. Dubourg, J.-P.
DeClercq, R. Contreras, A. Murillo and A. Klaebe, Acta
Crystallogr., Sect. C, 1985, 41, 1314.
22 S. D. Pastor, J. D. Spivack and L. P. Steinhuebel, Phosphorus, Sulfur
Silicon Relat. Elem., 1985, 22, 169.
23 K. Bourumeau, A.-C. Gaumont and J.-M. Denis, J. Organomet.
Chem., 1997, 529, 205.
24 M. Peruzzini, L. Marvelli, A. Romerosa, R. Rossi, F. Vizza and
F. Zanobini, Eur. J. Inorg. Chem., 1999, 931.
CCDC reference numbers 181265–181268.
lographic data in CIF or other electronic format.
25 J. P. Albrand and D. Gagnaire, J. Am. Chem. Soc., 1972, 94, 8630.
26 P. A. Chopard and R. F. Hudson, J. Inorg. Nucl. Chem., 1963, 25, 801.
27 (a) C. Couret, J. Escudie, H. Ranaivonjatovo and J. Satgé,
Organometallics, 1986, 5, 113; (b) A. H. Cowley, J. E. Kilduff,
N. C. Norman and M. Pakulski, J. Am. Chem. Soc., 1983, 105, 4845 .
For an example of a surprisingly stable fluorophosphine, see; (c)
R. C. Dobbie, P. D. Gosling and B. P. Straughan, J. Chem. Soc.,
Dalton Trans., 1975, 2368.
Acknowledgements
This research was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC). E. R.
thanks NSERC for a postgraduate fellowship (1999–2003),
I. M. thanks the University of Toronto for a McLean fellow-
ship (1997–2003), the Ontario Government for a PREA award
(1999–2003) and the Canadian Government for a Canada
Research Chair (2001). The authors also thank Mr. Cory Jaska
for obtaining solution 11B NMR spectra, Dr. Alex Young for
mass spectrometry data and Dr. Hiltrud Grondey for obtaining
CP-MAS NMR spectra.
28 An attempt to trap the potential phosphinidene intermediate
[PhP–BH3] by thermolysis of 3 in the presence of various alkene
solvents [cyclohexene, 65 ЊC; 2,3-dimethylbutadiene, 65 ЊC;
1-phenylcyclohexene, 140 ЊC] gave exclusively the free phosphine,
1
(Mes*O)PhPH (31P NMR: ca. δ 96.5, JPH = 190 Hz), and
hydroboration of the corresponding alkene (by 11B NMR). This
suggests that P–B bond cleavage is occurring in these solvents
without further elimination of the phenol.
29 R. K. Harris, J. Bowles, I. R. Stephenson and E. H. Wong,
Spectrochim. Acta, Part A, 1988, 44, 273.
30 B. Çetinkaya, I. Gümrükçü, M. F. Lappert, J. L. Atwood and
R. Shakir, J. Am. Chem. Soc., 1980, 102, 2086.
31 A. Pelter, R. Rosser and S. Mills, J. Chem. Soc., Chem. Commun.,
1981, 1014.
32 G. Giordano and R. H. Crabtree, Inorg. Synth., 1979, 19, 218.
33 Z. Otwinowski and W. Minor, Methods Enzymol., 1997, 276, 307.
34 G. M. Sheldrick, SHELXTL-PC V5.1, Bruker Analytical X-Ray
Systems Inc., Madison, WI, 1997.
References and notes
1 F. Gauvin, J. F. Harrod and H. G. Woo, Adv. Organomet. Chem.,
1998, 42, 363.
2 (a) C. T. Aitken, J. F. Harrod and E. Samuel, J. Am. Chem. Soc.,
1986, 108, 4059; (b) T. D. Tilley, Acc. Chem. Res., 1993, 26, 22.
2972
J. Chem. Soc., Dalton Trans., 2002, 2966–2972